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Preface

Preface

This manual provides reference information for using the VSI C language on OpenVMS systems. VSI C is an
ANSI compliant C compiler for the OpenVMS operating system on VAX, Alpha, and Intel Itanium processors
and for the Tru64 UNIX operating system on Alpha processors. The shortened forms, OpenVMS I64 and I64, are
also used throughout this manual.

VSI C is compliant with the International Standards Organization (ISO) C Standard (ISO 9899:1990[1992]),
formerly the American National Standard for Information Systems-Programming Language C (document number:
X3.159- 1989). By the use of command-line options, VSI C is compatible with older dialects of C, including
common usage C (Kernighan and Ritchie C) and VAX C.

This manual is based on the ISO C Standard (ISO 9899:1990[1992]), formerly the ANSI X3J11 committee’s
standard for the C programming language (called the ANSI C standard in this manual). All library functions and
language extensions to the ANSI C standard are also described.

1. Intended Audience
This manual is intended for programmers who need reference information on the VSI C language. There is little
task-oriented material or platform-specific material in this manual; for that type of information, see your platform-
specific VSI C documentation (user’s guide and online help for OpenVMS systems, programmer’s guide and
reference pages for Tru64 UNIX systems.)

2. Purpose of the ANSI Standard
The ANSI C standard was developed by a committee of program developers and knowledgeable C users to
address the problems caused by inexact specification of the C language. These problems were primarily related to
portability of programs between different types of machines. The committee analyzed the language for areas where
its syntax and semantics were vague or indeterminate, and then chose precise definitions for those C constructs.
The result is an unambiguous, machine-independent definition.

The ANSI C standard states that it:

‘‘ specifies the form and establishes the interpretation of programs expressed in the programming language C. [The
standard’s] purpose is to promote portability, reliability, maintainability, and efficient execution of C language
programs on a variety of computing systems. ’’

The standard specifies:

• Representation, syntax, and constraints of the C language

• Semantic rules for interpreting C programs

• Representation of input and output in C programs

The ANSI C standard does not specify:

• How C programs are compiled

How C programs are linked

How C programs are executed

All minimum or maximum limits on the size of machines running ANSI C programs

ix
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3. Manual Structure
This manual has the following chapters and appendixes:

Chapter 1, Lexicon describes the elements of the C language.

Chapter 2, Basic Concepts discusses some of the basic concepts underlying the C language.

Chapter 3, Data Types explains VSI C data types and type qualifiers.

Chapter 4, Declarations describes the declaration of identifiers in VSI C. The declaration of constants, variables,
structures, unions, pointers, and arrays is covered.

Chapter 5, Functions describes function calls, function declarations, function definitions, function parameters, and
function arguments.

Chapter 6, Expressions and Operators discusses the types of expressions you can build in C. It also explains the
effects of operators available in C, including unary, binary, conditional, primary, and postfix operators.

Chapter 7, Statements describes the C statements that provide flow control, conditional executions, looping, and
interruption.

Chapter 8, Preprocessor Directives and Predefined Macros explains the purpose of the C preprocessor directives
and predefined macros.

Chapter 9, The ANSI C Standard Library lists and describes the functions, macros, and types in the ANSI C
standard library, arranged by header file.

Appendix A, Language Syntax Summary provides a syntax summary of all C language constructs.

Appendix B, ANSI Conformance Summary describes the extent of the ANSI conformance of VSI C, including
exceptions and extensions to the standard.

Appendix C, ASCII Equivalence Table provides the ASCII octal, decimal, and hexadecimal equivalents for each
character in the ASCII character set.

Appendix D, Common C Extensions Supported by VSI C lists the common C extensions supported by VSI C using
the common C compatibility option.

Appendix E, VAX C Extensions Supported by VSI C lists the VAX C extensions supported by VSI C using the
VAX C compatibility option.

4. Associated Documents
You may find the following documents useful when programming in VSI C:

• VSI C User's Guide for OpenVMS Systems—This guide contains the information necessary for developing
and debugging VSI C programs on the OpenVMS operating system. This guide also includes VSI C features
specific to OpenVMS systems, as well as information about porting C programs to and from OpenVMS and
other operating systems.

• VSI C Run-Time Library Reference Manual for OpenVMS Systems—Provides complete reference information
on the VSI C library functions included with the OpenVMS operating system.

• cc(1) reference page—This reference page describes the cc command line options for VSI C on Tru64 UNIX
systems.

• Tru64 UNIX documentation set—This documentation set provides information about the Tru64 UNIX operating
system and its utilities. The following volumes are especially useful:
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• Tru64 UNIX Programmer's Guide—This guide describes the Tru64 UNIX programming environment,
including information necessary for developing and debugging C programs on the Tru64 UNIX operating
system. This guide, together with the cc(1) reference page, includes VSI C features specific to Tru64 UNIX
systems.

• Tru64 UNIX Reference Pages, Sections 2 and 3—Provides complete reference information on the C library
functions included with the Tru64 UNIX operating system.

• ANSI/ISO/IEC 9899:1999 - Programming Languages - C—The C99 standard, published by ISO in December,
1999 and adopted as an ANSI standard in April, 2000.

• ISO/IEC 9899:1990-1994 - Programming Languages - C, Amendment 1: Integrity—Documents what is also
known as ISO C, Amendment 1.

• ISO/IEC 9899:1990[1992] - Programming Languages - C—Documents is also known as ISO C. The normative
part is the same as X3.159-1989, American National Standard for Information Systems - Programming
Language C, also known as ANSI C.

• American National Standard for Information Systems–Programming Language C—This document is the result
of the X3J11 standards committee analysis of the C language. This document is a very technical description of
the ANSI C language, written for knowledgeable C programmers.

• The C Programming Language, 2nd Edition—This volume was produced before the final ANSI standard was
accepted, but it still serves as a valuable reference to the C language.

Because ANSI C contains more features and enhancements to the C language than are defined in The C
Programming Language, use this VSI C Language Reference Manual as the reference for a full description of
VSI C.

5. Conventions
The conventions found in the following table are used in this document.

Convention Meaning

Return Press the Return key.
UPPERCASE
TYPE

All uppercase letters in a command line indicate keywords that must be entered. You can enter them
in either uppercase or lowercase. You can use the first three characters to abbreviate command
keywords, or you can use the minimum unique abbreviation.

lowercase
ital- ics

Lowercase italics in command syntax or examples indicate variables for which either you or the
system supplies a value.

[ ] In examples showing VMS directory specifications, square brackets are a necessary part of the
specification, [directory-name].

In a procedure, square brackets in an inquiry enclose the default response for the inquiry.
key Press the specified key.
CTRL/x While holding down the Ctrl key, press the key specified by x.
# Vertical ellipses (dots) in examples represent data that has been omitted.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending electronic
mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have OpenVMS support
contracts through VSI can contact <support@vmssoftware.com> for help with this product. Users who
have OpenVMS support contracts through HPE should contact their HPE Support channel for assistance.
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7. How to Order Additional Documentation
For information about how to order additional documentation, email the VSI OpenVMS information account:
<info@vmssoftware.com>. We will be posting links to documentation on our corporate website soon.
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Chapter 1. Lexicon
C, like any language, uses a standard grammar and character set. The specific elements that comprise this grammar
and character set are described in the following sections:

• Character set (Section 1.1, “Character Set”)

• Rules for identifiers in C (Section 1.2, “Identifiers”)

• Use of universal character names (Section 1.3, “Universal Character Names”)

• Use of comments in a program (Section 1.4, “Comments”)

• Keywords (Section 1.5, “Keywords”)

• Use of C operators (Section 1.6, “Operators”)

• Use of punctuation characters (Section 1.7, “Punctuators”)

• Use of character strings in a program (Section 1.8, “String Literals”)

• Interpretation of constant values (Section 1.9, “Constants”)

• Inclusion of function declarations and other definitions, common to multiple source files, in a separate header
file or module (Section 1.10, “Header Files”)

• The limits imposed on a conforming program by the ANSI C standard (Section 1.11, “Limits”)

C compilers interpret source code as a stream of characters from the source file. These characters are grouped
into tokens, which can be punctuators, operators, identifiers, keywords, string literals, or constants. Tokens are
the smallest lexical element of the language. The compiler forms the longest token possible from a given string
of characters; the token ends when white space is encountered, or when the next character could not possibly be
part of the token.

 White space can be a space character, new-line character, tab character, form-feed character, or vertical tab
character. Comments are also considered white space. Section 1.1, “Character Set” lists all the white space
characters. White space is used as a token separator (except within quoted strings), but is otherwise ignored in the
character stream, and is used mainly for human readability. White space may also be significant in preprocessor
directives (see Chapter 8, Preprocessor Directives and Predefined Macros).

Consider the following source code line:

static int x=0;  /* Could also be written "static int x = 0;"   */

The compiler breaks the previous line into the following tokens (shown one per line):

static
int
x
=
0
;

As the compiler processes the input character stream, it identifies tokens and locates error conditions. The compiler
can identify three types of errors:

• Lexical errors, which occur when the compiler cannot form a legal token from the character stream (such as
when an illegal character is used).
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• Parsing (syntax) errors, which occur when a legal token can be formed, but the compiler cannot make a legal
statement from the tokens. For example, the following line contains incorrect punctuation surrounding an
initializer list:

char x[3] = (1,2,3);

• Semantic errors, which are grammatically correct but break another C language rule. For example, the following
line shows an attempt to assign a floating-point value to a pointer type:

int *x = 5.7;

Logical errors are not identified by the compiler.

An important concept throughout C is the idea of a compilation unit, which is one or more files compiled by the
compiler.

Note

The ANSI C standard refers to compilation units as translation units. This text treats these terms as equivalent.

The smallest acceptable compilation unit is one external definition. The ANSI C standard defines several key
concepts in terms of compilation units. Section 2.2, “Compilation Units” discusses compilation units in detail.

A compilation unit with no declarations is accepted with a compiler warning in all modes except for the strict
ANSI standard mode.

1.1. Character Set
A character set defines the valid characters that can be used in source programs or interpreted when a program is
running. The source character set is the set of characters available for the source text. The execution character set
is the set of characters available when executing a program. The source character set does not necessarily match
the execution character set; for example, when the execution character set is not available on the devices used to
produce the source code.

Different character sets exist; for example, one character set is based on the American Standard Code for
Information Interchange (ASCII) definition of characters, while another set includes the Japanese kanji characters.
The character set in use makes no difference to the compiler; each character simply has a unique value. C treats
each character as a different integer value. The ASCII character set has fewer than 255 characters, and these
characters can be represented in 8 bits or less. However, in some extended character sets, so many characters exist
that some characters' representation requires more than 8 bits. A special type was created to accommodate these
larger characters, called the wchar_t(or wide character) type. Section 1.9.3.1, “Wide Characters” discusses wide
characters further.

Most ANSI-compatible C compilers accept the following ASCII characters for both the source and execution
character sets. Each ASCII character corresponds to a numeric value. Appendix C, ASCII Equivalence Table lists
the ASCII characters and their numeric values.

• The 26 lowercase Roman characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

• The 26 uppercase Roman characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

• The 10 decimal digits:

0 1 2 3 4 5 6 7 8 9
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• The 30 graphic characters:

! # % ^ & * ( ) - _ = + ~ ' " : ; ? / | \ { } [ ] , . < > $

A warning is issued if the $ character is used when the compiler's strict ANSI mode option is specified.

• Five white space characters:

Space ( )
Horizontal tab (\t)
Form feed (\f)
Vertical tab (\v)
New-line character (\n)

In character constants and string literals, characters from the execution character set can also be represented
by character or numeric escape sequences. Section 1.9.3.3, “Character Escape Sequences” and Section 1.9.3.4,
“Numeric Escape Sequences” describe these escape sequences.

The ASCII execution character set also includes the following control characters: 

• New-line character (represented by \n in the source file),

• Alert (bell) tone (\a)

• Backspace (\b)

• Carriage return (\r)

• Null character (\0)

The null character is a byte or wide character with all bits set to 0. It is used to mark the end of a character string.
Section 1.8, “String Literals” discusses character strings in more detail.

The new-line character splits the source character stream into separate lines for greater legibility and for proper
operation of the preprocessor.

Sometimes a line longer than the terminal or window width must be interpreted by the compiler as one logical
line. One logical line can be typed as two or more lines by appending the backslash character (\) to the end of
the continued lines. The backslash must be immediately followed by a new-line character. The backslash signifies
that the current logical line continues on the next line. For example:

#define ERROR_TEXT "Your entry was outside the range of \
0 to 100." 

The compiler deletes the backslash character and the adjacent new-line character during processing, so that this
line becomes one logical line, as follows:

#define ERROR_TEXT "Your entry was outside the range of 0 to 100."

A long string can be continued across multiple lines by using the backslash-newline line continuation feature,
but the continuation of the string must start in the first position of the next line. In some cases, this destroys the
indentation scheme of the program. The ANSI C standard introduces another string continuation mechanism to
avoid this problem. Two string literals, with only white space separating them, are combined to form one logical
string literal. For example:

printf ("Your entry was outside the range of " 
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        "0 to 100.\n");

The maximum logical line length is 32,767 characters.

1.1.1. Trigraph Sequences
To write C programs using character sets that do not contain all of C's punctuation characters, ANSI C allows
the use of nine trigraph sequences in the source file. These three-character sequences are replaced by a single
character in the first phase of compilation. (See Section 2.16, “Preprocessing” for an explanation of compilation
phases.) Table 1.1, “Trigraph Sequences” lists the valid trigraph sequences and their character equivalents.

Table 1.1. Trigraph Sequences

Trigraph Sequence Character Equivalent

??= #
??( ]
??/ \
??) ]
??' ^
??< {
??! |
??> }
??- ~

No other trigraph sequences are recognized. A question mark (?) that does not begin a trigraph sequence remains
unchanged during compilation. For example, consider the following source line:

printf ("Any questions???/n");

After the ??/ sequence is replaced, this line is translated as follows:

printf ("Any questions?\n");

1.1.2. Digraph Sequences
Digraph processing is supported when compiling in ISO C 94 mode (/STANDARD=ISOC94 on OpenVMS
systems).

Digraphs are pairs of characters that translate into a single character, much like trigraphs, except that trigraphs
get replaced inside string literals, but digraphs do not. Table 1.2, “Digraph Sequences” lists the valid digraph
sequences and their character equivalents.

Table 1.2. Digraph Sequences

Digraph Sequence Character Represented

<: [
:> ]
<% {
%> }
%: #
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Digraph Sequence Character Represented

%:%: ##

1.2. Identifiers
An identifier is a sequence of characters that represents a name for the following:

• Variable

• Function

• Label

• Type definition

• Structure, enumeration, or union tag

• Structure, enumeration, or union member

• Enumeration constant

• Macro

• Macro parameter

The following rules apply to identifiers:

• Identifiers consist of a sequence of one or more: uppercase or lowercase alphabetic characters, universal
character names, the digits 0 to 9, the dollar sign ($), and the underscore character (_).

Using the $ character provokes a warning from the compiler in strict ANSI mode.

• Character case is significant in identifiers; for example, the identifier Test1 is different from the identifier
test1.

• Identifiers cannot begin with a digit.

• Do not begin identifiers with an underscore; the ANSI C standard reserves such identifiers for internal names.

• Each universal character name in an identifier must designate a character whose encoding in ISO/IEC 10646
falls into one of the ranges specified in Appendix F, Universal Character Names for Identifiers.

• Keywords are not identifiers (Section 1.5, “Keywords” lists the C keywords).

• Using the names of library functions for identifiers is bad practice (Chapter 9, The ANSI C Standard Library lists
the C library function names). A function with the same name as a library function will supersede the library
function. This may be the desired outcome, but program maintenance can be confusing.

• In general, identifiers are separated by white space, punctuators, or operators. For example, the following code
fragment has four identifiers:

struct employee { int number; char sex; } emp;

The identifiers are: employee, number, sex, and emp. (struct, int, and char are keywords).

An identifier without external linkage has at most 32,767 significant characters. An identifier with external
linkage has 1023 significant characters on Tru64 UNIX systems and 31 significant characters for OpenVMS
platforms. (Section 2.8, “Linkage” describes linkage in more detail.) Case is not significant in external identifiers
on OpenVMS systems.
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Identifiers that differ within their significant characters are different identifiers. If two or more identifiers differ in
nonsignificant characters only, they are treated as the same identifier.

1.3. Universal Character Names
Universal character names provide a way to name other characters. They can be used in identifiers, character
constants, and string literals to designate characters that are not in the basic character set.

A universal character name begins with a \u or \U and is followed by either four or eight hexadecimal digits.

The universal character name \Unnnnnnnn designates the character whose eight-digit short identifier (as specified
by ISO/IEC 10646) is nnnnnnnn) Similarly, the universal character name \unnnn designates the character whose
four-digit short identifier is nnnn (and whose eight-digit short identifier is 0000nnnn).

A universal character name cannot specify a character whose short identifier is less than 00A0, other than 0024
($), 0040 (@), or 0060 ('), nor one in the range D800 through DFFF inclusive.)

See Appendix F, Universal Character Names for Identifiers for a list of valid universal character names.

1.4. Comments
Except within a character constant, string literal, or a comment, the /* character combination introduces a
comment and the */ character combination ends a comment. The contents of such a comment are examined only
to identify multibyte characters and to find the characters */ to terminate it.

Alternatively, the // character combination introduces a comment that includes all multibyte characters up to, but
not including, the next new-line character. The contents of such a comment are examined only to identify multibyte
characters and to find the terminating new-line character.

Comments cannot be nested; once a comment is started, the compiler treats the first occurrence of */ as the end
of the comment.

To comment out sections of code, avoid using the /* and */ sequences. Using the /* and */ sequences works
only for code sections containing no comments, because comments do not nest. A better method is to use the #if
and #endif preprocessor directives, as in the following example:

#if 0
/*  This code is excluded from execution because ...  */
code_to_be_excluded ();
#endif

See Chapter 8, Preprocessor Directives and Predefined Macros for more information on the preprocessing
directives #if and #endif.

Comments cannot span source files. Within a source file, comments can be of any length and are interpreted as
white space by both the compiler and the preprocessor.

Examples:

"a//b"                   // four-character string literal
#include "//e"           // undefined behavior
// */                    // comment, not syntax error
f = g/**//h;             // equivalent to f = g / h;
//\
i();                     // part of a two-line comment
/\
/ j();                   // part of a two-line comment
#define glue(x,y) x##y
glue(/,/) k();           // syntax error, not comment
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/*//*/ l();              // equivalent to l();
m = n//**/o
+ p;                     // equivalent to m = n + p;

1.5. Keywords
C defines several keywords, each with special meaning to the compiler. Keywords identify statement constructs
and specify basic types and storage classes.  Keywords cannot be used as identifiers and cannot be declared.

Table 1.3, “Keywords” lists the C keywords.

Table 1.3. Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

_Bool _Complex(Alpha, I64) inline restrict
_Imaginary(Alpha,
I64)

In addition to the keywords listed in Table 1.3, “Keywords”, the compiler reserves all identifiers that begin with
two underscores (__) or with an underscore followed by an uppercase letter. User variable names must never begin
with one of these sequences.

Keywords are used as follows:

• To assign a storage class to a variable or function (auto, extern, register, static)

• To construct or qualify a data type (_Bool, char, _Complex (Alpha, I64), const, double, enum, float,
int, long, short, signed, struct, union, unsigned, void, volatile)

• As part of a statement (break, case, continue, default, do, else, for, goto, if, return, switch,
while)

• To define a new named type (typedef)

• To perform an operation (sizeof, _ _typeof_ _)

The following VAX C keywords are also sometimes1 recognized by the compiler:

_align
globaldef
globalref
globalvalue

1Recognized on OpenVMS systems when /STANDARD=RELAXED (the default), /STANDARD=VAXC or /
ACCEPT=VAXC_KEYWORDS is specified on the compiler command line. Recognized on (T64 UNIX) systems when -vaxc or -accept
vaxc_keywords is specified on the compiler command line.
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noshare
readonly
variant_struct
variant_union

The following C99 Standard keywords are also sometimes2 recognized by the compiler:

inline
restrict

Use of a keyword as a superfluous macro name is not recommended, but is legal; for example, to change the
default size of a basic data type:

#define int short

Here, the keyword int has been redefined as short, which causes all data objects declared with the int data
type to be stored as short objects.

1.6. Operators
An operator is a token that specifies an operation on at least one operand, and yields some result  (a value,
designator, side effect, or some combination). Operands are expressions or constants (a form of expression).
Operators with one operand are unary operators, and operators with two operands are binary operators. For
example: 

x = -b;          /*   Unary minus operator   */
y = a - c;       /*   Binary minus operator  */

Operators with three operands are called ternary operators.

All operators are ranked by precedence, a ranking system determining which operators are evaluated before others
in a statement. See Chapter 6, Expressions and Operators for information on what each operator does and for the
rules of operator precedence.

Some operators in C are composed of more than one character, while others are single characters. The single-
character operators in C are:

!  %  ^  &  *  -  +  =  ~  |  .  <  >  /  ?  :  ,  [  ]  (  )  #

The multiple-character operators in C are:

++    --    ->    <<     >>     <=    >=    ==    !=    *=    /=
%=    +=    -=    <<=    >>=    &=    ^=    |=    ##    &&     ||

The # and ## operators can only be used in preprocessor macro definitions. See Chapter 8, Preprocessor Directives
and Predefined Macros for more information on predefined macros and preprocessor directives.

The sizeof operator determines the size of a data type. See Chapter 6, Expressions and Operators for more
information on the sizeof operator.

The old form for compound assignment operators (=+, =-, =*, =/, =%, =<<, =>>, =&, =^, and =|) is not
supported by the ANSI C standard. Use of these operators in a program is unsupported, and will produce
unpredictable results. For example:

x =-3;

2Recognized on OpenVMS systems when /STANDARD=RELAXED (the default), /STANDARD=C99, or /ACCEPT=C99_KEYWORDS is
specified on the compiler command line. Recognized on (T64 UNIX) systems when -std (the default), -c99, or -accept c99_keywords
is specified on the compiler command line.
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This construction means x is assigned the value -3, not x is assigned the value

x - 3

The error-checking compiler option provides a warning message when the old form of compound assignment
operators is encountered.

1.7. Punctuators
Some characters in C are used as punctuators, which have their own syntactic and semantic significance.
Punctuators are not operators or identifiers. Table 1.4, “Punctuators” lists the C punctuators.

Table 1.4. Punctuators

Punctuator Use Example

< > Header name <limits.h>

[ ] Array delimiter char a[7];

{ } Initializer list,
function body,
or compound
statement
delimiter

char x[4] = {'H', 'i', '!', '0'  }; 

( ) Function
parameter list
delimiter; also
used in expression
grouping

int f (x,y)

* Pointer declaration int *x;

, Argument list
separator

char x[4] = { 'H', 'i', '!', '0'};

: Statement label labela: if (x == 0) x += 1;

= Declaration
initializer

char x[4] = { "Hi!" };

; Statement end x += 1;

... Variable-length
argument list

int f ( int y, ...) 

# Preprocessor
directive

#include 
<limits.h>

’ ’ Character constant char x = 'x';

" " String literal or
header name

char x[] = "Hi!";

The following punctuators must be used in pairs:

< >
[ ]
( )
' '
" "
{ }

Some characters can be used either as a punctuator or as an operator, or as part of an operator. The context of
the occurrence specifies the meaning. Punctuators usually delineate a specific type of C construct, as shown in
Table 1.4, “Punctuators”. 
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1.8. String Literals
Strings are sequences of zero or more characters. A character string literal is a sequence of zero or more multibyte
characters enclosed in double quotation marks, as in "xyz". String literals can include any valid character, including
white-space characters and character escape sequences. A wide string literal is the same, except prefixed by the
letter L. Once a string is stored as a string literal, modification of the string leads to undefined results.

In the following example, ABC is the string literal. It is assigned to a character array where each character in
the string literal is stored as one array element. Storing a string literal in a character array lets you modify the
characters of the array.

char x[] = "ABC";

String literals are typically stored as arrays of type char (or wchar_t if prefaced with an L), and have static
storage duration.

The following declaration declares a character array to hold the string "Hello!":

char s[] = "Hello!";

The character array s is initialized with the characters specified in the double quotation marks, and terminated
with a null character (\0). The null character marks the end of each string, and is automatically concatenated to the
end of the string literal by the compiler. Adjacent string literals are automatically concatenated (with a single null
character added at the end) to reduce the need for the line continuation character (the backslash at the end of a line).

Normal string literals and wide string literals can be concatenated, in which case the normal strings get promoted
to wide strings, and a wide-string result is produced.

Following are some valid string literals:

""            /*  Here's a string with only the null character */

"You can have many characters in a string." 

"\"You can mix characters and escape sequences.\"\n"

"Long lines of text can be continued on the next line \
by using the backslash character at the end of a line."

"Or, long lines of text can be continued by using "
"ANSI's concatenation of adjacent string literals."

"\'\n"        /*  Only escape sequences are in this string    */

To determine the length of a given string literal (not including the null character), use the strlen function.
See Chapter 9, The ANSI C Standard Library for more information on other library routines available for string
manipulation.

1.9. Constants
There are four categories of constants in C:

• Integer constants (such as 63, 0, and 42L)

• Floating-point constants (such as 1.2, 0.00, and 77E+2)

• Hexadecimal floating-point constants (such as 0x1P-1 or 0x.1P3 to represent 1/2).
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• Character constants (such as 'A', '0', and L'\n')

• Enumeration constants (such as enum boolean { NO, YES };), where NO and YES are the enumeration
constants

The following sections describe these constants.

The value of any constant must be within the range of representable values for the specified type. Regardless of
its type, a constant is a literal or symbolic value that does not change. A constant is also an rvalue, as defined in
Section 2.14, “lvalues and rvalues”.

1.9.1. Integer Constants
Integer constants are used to represent whole numbers. An integer constant can be specified in decimal, octal, or
hexadecimal radix, and can optionally include a prefix that specifies its radix and a suffix that specifies its type.
An integer constant cannot include a period or an exponent part.

Follow these rules when specifying an integer constant:

• To specify a decimal integer constant, use a sequence of decimal digits in which the first digit is not 0. The
value of a decimal constant is computed in base 10.

• To specify an octal integer constant, start the sequence with a zero (0) and follow the 0 (if necessary) with a
sequence composed of the digits 0 to 7. A leading 0 alone signifies the octal number 0. The value of an octal
constant is computed in base 8.

• To specify a hexadecimal integer constant, start the hexadecimal sequence with a 0 followed by the character X
(or x). Follow the X or x with one or more hexadecimal characters (the digits 0 to 9 and the upper or lowercase
letters A to F). The value of a hexadecimal constant is computed in base 16 (the letters A to F have the values
10 to 15, respectively).

Without explicit specification, the type of an integer constant defaults to the smallest possible type that can hold
the constant's value, unless the value is suffixed with an L, l, LL ((Alpha, I64)), ll ((Alpha, I64)), U, or u.

The C99 standard introduced the type long long int (both signed and unsigned) as a standard integer type
whose range of values requires at least 64 bits to represent. Although VSI C on Alpha systems implemented the
type long long as a language extension many releases ago, the compiler followed the C89 rules for determining
the type of an integer constant. Those rules specified that an unsuffixed decimal integer with a value too large
to be represented in a signed long would be given the type unsigned long if it would fit, and only be
given a long long type if the value was too large for unsigned long. (Note: The long long data type
is supported on Alpha and I64 systems only.)

In standardizing the long long type, the C99 standard regularized these rules and made them extensible to
longer types. In particular, unsuffixed decimal integer constants are given the smallest signed integer type that will
hold the value (the minimum type is still int). If the value is larger than the largest value of signed long
long, it is given the next larger implementation-defined signed integer type (if there is one). Otherwise C99 states
that the behavior is undefined.VSI C, however, uses the type unsigned long long next. The only portable
way to specify a decimal constant that will be given an unsigned type is to use a suffix containing u or U.

VSI C continues to use the C89 rules in VAXC, COMMON, and strict ANSI89 modes (including MIA), but uses
the new C99 rules in all other modes. Table 1.5, “Rules for Assigning Type to Integer Constants” shows the rules
for determining the type of an integer constant. The type of an integer constant is the first of the corresponding
list in which its value can be represented.

Table 1.5. Rules for Assigning Type to Integer Constants

Suffix Decimal Constant Octal or Hexadecimal Constant

none int int

long int unsigned int
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Suffix Decimal Constant Octal or Hexadecimal Constant

long long int1 long int

unsigned long long int unsigned long int

long long int

unsigned long long int

u or U unsigned int unsigned int

unsigned long int unsigned long int

unsigned long long int unsigned long long int

l or L long int long int

long long int1 unsigned long int

unsigned long long int long long int

unsigned long long int

Both u or U unsigned long int unsigned long int

and l or L unsigned long long int unsigned long long int

ll or LL long long int long long int

unsigned long long int unsigned long long int

Both u or U unsigned long long int unsigned long long int

and ll or LL
1In VAXC, COMMON, ANSI89, and MIA modes, the type unsigned long int is assigned before long long int.

For example, the constant 59 is assigned the int data type; the constant 59L is assigned the long data type; the
constant 59UL is assigned the unsigned long int data type.

Integer constant values are always nonnegative; a preceding minus sign is interpreted as a unary operator, not
as part of the constant. If the value exceeds the largest representable integer value (causing an overflow), the
compiler issues a warning message and uses the greatest representable value for the integer type. Unsuffixed
integer constants can have different types, because without explicit specification the constant is represented in the
smallest possible integer type.

Note

The new C99 rules for determining the type of an integer constant could lead to some constants in your program
being interpreted as having a signed type when previous compiler versions gave them an unsigned type. This could
affect your program's behavior in subtle ways. The new message intconstsigned can be enabled to report
constants in your source code that are being treated differently under the C99 rules than they were in previous
releases. This message is also part of the new message group NEWC99. If your program relied on unsigned
treatment, the simple fix is to add the correct suffix including a "U" or "u" to force the constant to have the expected
type. Such a change would be backward compatible and portable.

1.9.2. Floating-Point Constants
A floating-point constant has a significand part that may be followed by an exponential part and an optional suffix
that specifies its type (for example, 32.45E2).

The components of the significand part may include a digit sequence representing the whole number part, followed
by a period (.), followed by a digit sequence representing the fractional part.

The components of the exponent part are an e, E, p, or P followed by an exponent consisting of an optionally
signed digit sequence.
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Either the whole-number part or the fraction part of the significand must be present. For decimal floating constants,
either the period or the exponent part must be present.

1.9.2.1. Semantics
The significand part of a floating-point constant is interpreted as a decimal or hexadecimal rational number; the
digit sequence in the exponent is interpreted as a decimal integer. For decimal floating constants, the exponent
indicates the power of 10 by which the significand part is to be scaled. For hexadecimal floating constants, the
exponent indicates the power of 2 by which the significand part is to be scaled. For decimal floating constants,
and for hexadecimal floating constants when FLT_RADIX is not a power of 2, the result is either the nearest
representable value, or the larger or smaller representable value immediately adjacent to the nearest representable
value, chosen in an platform-dependent manner. For hexadecimal floating constants when FLT_RADIX is a power
of 2, the result is correctly rounded.

Floating-point constant values must be nonnegative; a preceding minus sign is interpreted as a unary operator,
not as part of the constant.

1.9.2.2. Floating-Point Type
Floating-point constants have the following type:

• An unsuffixed floating-point constant has type double.

If the value exceeds the largest value representable by type double, a compiler overflow warning results. (The
result is truncated within the double type.)

• If suffixed by the letter f or F, it has type float.

• If suffixed by the letter l or L, it has type long double.

1.9.2.3. Hexadecimal Floating-Point Constants
A word about hexadecimal floating-point constants... The C99 standard introduced a hexadecimal form of floating-
point constants. This form of constant permits floating-point values to be specified reliably to the last bit of
precision. It does not specify a bit pattern for the representation. Instead it is interpreted much like an ordinary
decimal floating-point constant except that the significand is written in hexadecimal radix, and the exponent is
expressed as a decimal integer indicating the power of two by which to multiply the significand. A "P" instead of an
"E" separates the exponent from the significand. Thus, for example, 1/2 can be written as either 0x1P-1 or 0x.1P3.

The C99 standard also adds printf/scanf specifiers for this form of value.

1.9.2.4. Examples
Table 1.6, “Floating-Point Notation” shows examples of valid notational options. 

Table 1.6. Floating-Point Notation

Notation Value Type

.0 0.000000 double

0. 0.000000 double

2. 2.000000 double

2.5 2.500000 double

2e1 20.00000 double

2E1 20.00000 double

0x1P-1 0.500000 double

0x.1P3 0.500000 double
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Notation Value Type

2.E+1 20.00000 double

2e+1 20.00000 double

2e-1 0.200000 double

2.5e4 25000.00 double

2.5E+4 25000.00 double

2.5F 2.500000 float

2.5L 2.500000 long double

1.9.3. Character Constants
A character constant is any character from the source character set enclosed in apostrophes. Character constants
are represented by objects of type int. For example:

char alpha = 'A';

Characters such as the new-line character, single quotation marks, double quotation marks, and backslash can be
included in a character constant by using escape sequences as described in Section 1.9.3.3, “Character Escape
Sequences”. All valid characters can also be included in a constant by using numeric escape sequences, as described
in Section 1.9.3.4, “Numeric Escape Sequences”.

The value of a character constant containing a single character is the numeric value of the character in the current
character set. Character constants containing multiple characters within the single quotation marks have a value
determined by the compiler. The value of a character constant represented by an octal or hexadecimal escape
sequence is the same as the octal or hexadecimal value of the escape sequence. The value of a wide character
constant (discussed in Section 1.9.3.1, “Wide Characters”) is determined by the mbtowc library function.

There is a limit of four characters for any one character constant. Enclosing more than four characters in single
quotation marks (such as 'ABCDE'), generates an overflow warning.

Note that the byte ordering of character constants is platform specific.

1.9.3.1. Wide Characters
C provides for an extended character set through the use of wide characters. Wide characters are characters too
large to fit in the char type. The wchar_t type is typically used to represent a character constant in a character
set requiring more than 256 possible characters, because 8 bits can represent only 256 different values.

A character constant in the extended character set is written using a preceding L, and is called a wide-character
constant. Wide-character constants have an integer type, wchar_t, defined in the <stddef.h> header file.
Wide-character constants can be represented with octal or hexadecimal character escape sequences, just like normal
character escape sequences, but with the preceding L.

Strings composed of wide characters can also be formed. The compiler allocates storage as if the string were
an array of type wchar_t, and appends a wide null character (\0) to the end of the string. The array is just
long enough to hold the characters in the string and the wide null character, and is initialized with the specified
characters.

The following examples show valid wide-character constants and string literals:

wchar_t wc = L'A';
wchar_t wmc = L'ABCD';
wchar_t *wstring = L"Hello!";
wchar_t *x = L"Wide";
wchar_t z[] = L"wide string";
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VSI C stores wchar_t objects as unsigned long objects (OVMS) or unsigned int objects (T64 UNIX)
in 32 bits of storage. The null character at the end of a wide-character string is 32 bits long.

1.9.3.2. Multibyte Characters
Some programmers requiring an extended character set have used shift-dependent encoding schemes to represent
the non-ASCII characters in the normal char size of 8 bits. This encoding results in multibyte characters. ANSI
C supports these encoding schemes, in addition to providing the wide-character type wchar_t.

In accordance with the ANSI standard, VSI C recognizes multibyte characters in the following contexts:

• Comments

• String literals

• Header names

• Character constants

For proper input and output of the multibyte character encodings, and to prevent conflicts with existing string
processing routines, note the following rules governing the use of multibyte characters:

• A byte with all bits set to zero is always recognized as a null character. Null characters can only be single bytes.

• A null character cannot occur as the second or subsequent byte of a multibyte character.

Transforming multibyte characters to wide-character constants and wide string literals eases the programmer's
problems when dealing with shift-state encoding. There are several C library functions available for transforming
multibyte characters to wide characters and back. See Chapter 9, The ANSI C Standard Library for more
information.

1.9.3.3. Character Escape Sequences
Characters that cannot be displayed on a standard terminal, or that have special meaning when used in character
constants or string literals, can be entered as source characters by entering them as  character escape sequences.
A backslash (\) begins each character escape sequence. Each of the escape sequences is stored in a single char
or wchar_t object. Table 1.7, “Character Escape Sequences” lists the ANSI-defined escape sequences.

Table 1.7. Character Escape Sequences

Character Escape Sequence

Alert (Bell) \a

Backspace \b

Form Feed \f

New line \n

Carriage Return \r

Horizontal Tab \t

Vertical Tab \v

Backslash \\

Single Quote \'

Double Quote \"

Question Mark \?

No other character escape sequences are valid. If another sequence is encountered in the source code, the compiler
issues a warning and the backslash character is ignored.
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An example of a character escape sequence use follows:

printf ("\t\aReady\?\n");

Upon execution, this results in an alert bell and the following prompt:

     Ready?

1.9.3.4. Numeric Escape Sequences
The compiler treats all characters as an integer representation, so it is possible to represent any character in the
source code with its numeric equivalent. This is called a numeric escape sequence. The character is represented
by typing a backslash (\), followed by the character's octal or hexadecimal integer equivalent from the current
character set (see Appendix C, ASCII Equivalence Table for the ASCII equivalence tables). For example, using the
ASCII character set, the character A can be represented as \101 (the octal equivalent) or \x41 (the hexadecimal
equivalent). A preceding 0 in the octal example is not necessary because octal values are the default in numeric
escape sequences. A lowercase x following the backslash indicates a hexadecimal representation. For example,
\x5A is equivalent to the character Z.

An example of numeric escape sequences follows:

#define NUL '\0'   /*  Defines logical null character   */

char x[] = {'\110','\145','\154','\154','\157','\41','\0'};
                    /*  Initializes x with "Hello!"  */

The escape sequence extends to three octal digits, or the first character that is not an octal digit, whichever is first.
Therefore, the string "\089" is interpreted as four characters: \0, 8, 9, and \0.

With hexadecimal escape sequences, there is no limit to the number of characters in the escape sequence, but the
result is not defined if the hexadecimal value exceeds the largest value representable by the unsigned char
type for an normal character constant, or the largest value representable by the wchar_t type for a wide-character
constant. For example, '\x777' is illegal.

In addition, hexadecimal escape sequences with more than three characters provoke a warning if the error-checking
compiler option is used.

String concatenation can be used to specify a hexadecimal digit following a hexadecimal escape sequence. In the
following example, a is initialized to the same value in both cases:

char a[] = "\xff" "f";
char a[] = {'\xff', 'f', '\0'};

Using numeric escape sequences can result in a nonportable program if the executing machine uses a different
character set. Another threat to portability exists if arithmetic operations are performed on the integer character
values, because multiple character constants (such as 'ABC' can be represented differently on different machines.

1.9.4. Enumeration Constants
An enumerated type specifies one or more enumeration constants to define allowable values for the enumerated
type. Enumeration constants have the type signed int, except in the compiler's RELAXED mode, in which
other types are allowed. See Section 3.6, “Enumerated Types” for details on the declaration and use of enumerated
types.

1.10. Header Files
 Header files are text files included in a source file during compilation. To include a header file in a compilation,
the #include preprocessor directive must be used in the source file. See Chapter 8, Preprocessor Directives
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and Predefined Macros for more information on this directive. The entire header file, regardless of content, is
substituted for the #include preprocessor directive.

A header file can contain other #include preprocessor directives to include another file. You can nest
#include directives to any depth.

Header files can include any legal C source code. They are most often used to include external variable declarations,
macro definitions, type definitions, and function declarations. Groups of logically related functions are commonly
declared together in a header file, such as the C library input and output functions listed in the stdio.h header
file. Header files traditionally have a .h suffix (stdio.h, for example).

The names of header files must not include the ' , \ , " , or /* characters, because the use of these punctuation
characters in a header file is undefined.

When referenced in a program, header names are surrounded by angle brackets or double quotation marks, as
shown in the following example:

#include <math.h>   /* or  */ 
#include "local.h"

Chapter 8, Preprocessor Directives and Predefined Macros explains the difference between the two formats. The
algorithm the compiler uses for finding the named files is discussed in Section B.37, “Source File Inclusion
(§3.8.2)”. Chapter 9, The ANSI C Standard Library describes the library routines in each of the ANSI standard
header files. 

1.11. Limits
The ANSI C standard suggests several environmental limits on the use of the C language. These limits are an
effort to define minimal standards for a conforming implementation of a C compiler. For example, the number
of significant characters in an identifier is implementation-defined, with a minimum set required by the ANSI C
standard.

The standard also includes several numerical limits that restrict the characteristics of integral and floating-point
types. For the most part, these limits will not affect your use of the C language or compiler. However, for unusually
large or unusually constructed programs, certain limits can be reached. The ANSI standard contains a list of
minimum limits, and your platform-specific VSI C documentation contains the actual limits used in VSI C.

1.11.1. Translation Limits
As intended by the ANSI C standard, the VSI C implementation avoids imposing many of the translation limits,
allowing applications more flexibility. The VSI C limits are:

• A maximum of 32,767 significant characters in an internal identifier or macro name (a warning message is
issued if this limit is exceeded)

• A maximum of 1023 significant characters in an external identifier for Tru64 UNIX systems.

• A maximum of 31 significant characters in an external identifier for OpenVMS VAX platforms (a warning
message is issued if this limit is exceeded and the identifier is truncated)

• A maximum of 253 function arguments/formal parameters on OpenVMS systems; a maximum of 1023 function
arguments/formal parameters on Tru64 UNIX systems.

• A maximum of 1012 bytes in any one function argument, and a maximum of 1012 bytes in a function argument
list on OpenVMS systems

• A maximum of 32,767 characters in a logical source line

• A maximum of 32,767 characters in a physical source line
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• A maximum of 32,767 bytes in the representation of a string literal (this limit does not apply to string literals
formed as a result of concatenation)

1.11.2. Numerical Limits
Numerical limits define the sizes and characteristics of integral and floating-point types. Numerical limits are
described in the limits.h and float.h header files. The limits are: 

• Each character of type char is represented in 8 bits.

• Each character of type wchar_t is represented in 32 bits.

• The machine representation and set of possible values for the char type is the same as for the signed char
type. A compiler command-line option changes this equivalence to unsigned char.

• On OpenVMS systems, the machine representation and set of possible values for the int and signed int
types are the same as for the long int type.

• On OpenVMS systems, the machine representation and set of possible values for the unsigned int type
are the same as for the unsigned long int type.

• On Tru64 UNIX systems, the long int and unsigned long int types are 64 bits, while int and
unsigned int are 32 bits.

• The machine representation and set of possible values for the long double type is the same as for the
double type.

1.11.3. Character Display
Characters from the executable character set are output to the active position on the screen or in a file. The active
position is defined by the ANSI C standard as the spot where the next output character will appear. After a character
is output, the active position advances to the next position on the current line (to the left or right).

The VSI C compiler moves the active position from left to right across an output line.
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Chapter 2. Basic Concepts
The C language was initially designed as a small, portable programming language used to implement an operating
system. In its history, C has evolved into a powerful tool for writing all types of programs, and includes mechanisms
to achieve most programming goals. C offers:

• A standard set of lexical elements

• A wide variety of types for data objects, including:

• Integer and floating-point constants and variables

• Pointers to data locations in memory and the ability to do pointer arithmetic

• Arrays of identically typed data

• Structures and unions with members of different data types

• The ability to group independent code blocks into named functions

• A large set of operators used to form expressions, including bit-wise operators

• A simple method of declaring data objects and functions

• Several preprocessor directives to expand the functionality of the language

• Numerous library functions to handle many common programming tasks

• A high degree of portability

To help you take full advantage of C's features, the following sections provide a guide to the basic concepts of
the language:

• Blocks (Section 2.1, “Blocks”)

• Compilation units (Section 2.2, “Compilation Units”)

• Scope (Section 2.3, “Scope”)

• Visibility (Section 2.4, “Visibility”)

• Side effects and sequence points (Section 2.5, “Side Effects and Sequence Points”)

• Incomplete type (Section 2.6, “Incomplete Type”)

• Compatible and composite types (Section 2.7, “Compatible and Composite Types”)

• Linkage (Section 2.8, “Linkage”)

• Storage classes (Section 2.10, “Storage Classes”)

• Storage-class modifiers (Section 2.11, “Storage-Class Modifiers”)

• Forward references (Section 2.12, “Forward References”)

• Tags (Section 2.13, “Tags”)

• lvalues and rvalues (Section 2.14, “lvalues and rvalues”)
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• Name spaces (Section 2.15, “Name Spaces”)

• Preprocessing (Section 2.16, “Preprocessing”)

• Type names (Section 2.17, “Type Names”)

These sections represent an expanded glossary of selected C terms and basic concepts. Understanding these
concepts will provide a good foundation for a working knowledge of C, and will help show the relationship of
these concepts to more complex ones in the language.

2.1. Blocks
A block in C is a section of code surrounded by braces { }. Understanding the definition of a block is very important
to understanding many other C concepts, such as scope, visibility, and external or internal declarations. 

The following example shows two blocks, one defined inside the other:

main ()
{              /*  This brace marks the beginning of the outer block  */
   int x;
   if (x!=0)
   {           /*  This brace marks the beginning of the inner block */
      x = x++;
      return x;
   };          /*  This brace marks the end of the inner block        */
}              /*  This brace marks the end of the outer block        */

A block is also a form of a compound statement; a set of related C statements enclosed in braces. Declarations
of objects used in the program can appear anywhere within a block and affect the object's scope and visibility.
Section 2.3, “Scope” discusses scope; Section 2.4, “Visibility” discusses visibility.

2.2. Compilation Units
A compilation unit is C source code that is compiled and treated as one logical unit.  The compilation unit is usually
one or more entire files, but can also be a selected portion of a file if, for example, the #ifdef preprocessor
directive is used to select specific code sections. Declarations and definitions within a compilation unit determine
the scope of functions and data objects.

Files included by using the #include preprocessor directive become part of the compilation unit. Source lines
skipped because of the conditional inclusion preprocessor directives are not included in the compilation unit.

Compilation units are important in determining the scope of identifiers, and in determining the linkage of identifiers
to other internal and external identifiers. Section 2.3, “Scope” discusses scope. Section 2.8, “Linkage” discusses
linkage.

A compilation unit can refer to data or functions in other compilation units in the following ways:

• A function in one compilation unit can call a function in a different compilation unit.

• Data objects can be assigned external linkage so that other compilation units have access to them (see Section 2.8,
“Linkage”).

Programs composed of more than one compilation unit can be separately compiled, and later linked to produce
the executable program. A legal C compilation unit consists of at least one external declaration, as defined in
Section 4.3, “External Declarations”.

A translation unit with no declarations is accepted with a compiler warning in all modes except for the strict ANSI
standard mode.
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2.3. Scope
The scope of an identifier is the range of the program in which the declared identifier has meaning. An identifier
has meaning if it is recognized by the compiler. Scope is determined by the location of the identifier's declaration.
Trying to access an identifier outside of its scope results in an error. Every declaration has one of four kinds of
scope:

• File

• Block

• Function

• Function prototype (a declaration including only the function's parameter types)

An enumeration constant's scope begins at the defining enumerator in an enumerator list. The scope of a statement
label includes the entire function body. The scope of any other type of identifier begins at the identifier itself in
the identifier's declaration. See the following sections for information on when an identifier's scope ends.

2.3.1. File Scope
An identifier whose declaration is located outside any block or function parameter list has file scope. An identifier
with file scope is visible from the declaration of the identifier to the end of the compilation unit, unless hidden by
an inner block declaration. In the following example, the identifier off has file scope:

int off = 5;     /*  Declares (and defines) the integer 
                        identifier off.                           */
main ()
{
   int on;       /*  Declares the integer identifier on.          */
   on = off + 1; /*  Uses off, declared outside the function 
                     block of main.  This point of the 
                     program is still within the
                     active scope of off.                         */
   if (on<=100)
   {
     int off = 0;/*  This declaration of off creates a new object 
                     that hides the former object of the same name.  
                     The scope of the new off lasts through the
                     end of the if block.                         */
     off = off + on;
     return off;
   }
}

2.3.2. Block Scope
An identifier appearing within a block or in a parameter list of a function definition has block scope and is visible
within the block, unless hidden by an inner block declaration.

Block scope begins at the identifier declaration and ends at the closing brace (}) completing the block. In the
following example, the identifier red has block scope and blue has file scope:

int blue = 5;                /*  blue: file scope            */
main ()
{
    int x = 0 , y = 0;       /*  x and y: block scope        */
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    int red = 10;            /*  red: block scope            */
    x = red + blue;
}

2.3.3. Function Scope
Only statement labels have function scope (see Chapter 7, Statements). An identifier with function scope is unique
throughout the function in which it is declared. Labeled statements are used as targets for goto statements and
are implicitly declared by their syntax, which is the label followed by a colon (:) and a statement. For example:

int func1(int x, int y, int z)
{
  label:  x += (y + z);   /*  label has function scope        */
  if (x > 1) goto label;
}
int func2(int a, int b, int c)
{
  if (a > 1) goto label; /*  illegal jump to undefined label */
}

See Section 7.1, “Labeled Statements” for more information on statement labels.

2.3.4. Function Prototype Scope
An identifier that appears within a function prototype's list of parameter declarations has function prototype scope.
The scope of such an identifier begins at the identifier's declaration and terminates at the end of the function
prototype declaration list. For example:

int students ( int david, int susan, int mary, int john );

In this example, the identifiers (david, susan, mary, and john) have scope beginning at their declarations
and ending at the closing parenthesis. The type of the function students is “function returning int with four
int parameters.” In effect, these identifiers are merely placeholders for the actual parameter names to be used
after the function is defined.

2.4. Visibility
An identifier is visible only within a certain region of the program. An identifier has visibility over its entire
scope, unless a subsequent declaration of the same identifier in an enclosed block overrides, or hides, the previous
declaration. Visibility affects the ability to access a data object or other identifier, because an identifier can be
used only where it is visible.

Once an identifier is used for a specific purpose, it cannot be used for another purpose within the same scope,
unless the second use of the identifier is in a different name space. Section 2.15, “Name Spaces” describes the name
space restrictions. For example, declarations of two different data objects using the same name as an identifier is
illegal within the same scope.

When the scope of one of two identical identifiers is contained within the other (nested), the identifier with inner
scope remains visible, while the identifier with wider scope becomes hidden for the duration of the inner identifier's
scope.

In the following example, the identifier number is used twice: once as an integer variable and once as a floating-
point variable. For the duration of the function main, the integer number is hidden by the floating-point number.

#include <math.h>
int number;        /*  number is declared as an integer variable  */

main ()
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{
 float x;
 float number;     /*  This declaration of number occurs in an inner 
                       block, and "hides" the outer declaration.  
                       The inner declaration creates a new object */
 x = sqrt (number);/*  x receives a floating-point value          */
}

2.5. Side Effects and Sequence Points
The actual order in which expressions are evaluated is not specified for most of the operators in C. Because this
sequence of evaluation is determined within the compiler depending on context, some unexpected results may
occur when using certain operators. These unexpected results are caused by side effects. 

Any operation that affects an operand's storage has a side effect. Side effects can be deliberately induced by the
programmer to produce a desired result; in fact, the assignment operator depends on the side effect of altered
storage to do its job. C guarantees that all side effects of a given expression will be completed by the next sequence
point in the program. Sequence points are checkpoints in the program at which the compiler ensures that operations
in an expression are concluded.

The most important sequence point is the semicolon marking the end of a statement. All expressions and their side
effects are completely evaluated when the semicolon is reached. Other sequence points are as follows:

• expr1, expr2 (the comma operator)

• expr1 && expr2 (the logical AND operator)

• expr1 || expr2 (the logical OR operator)

• expr1 ? expr2 : expr3 (the conditional operator)

These operations do guarantee the order, or sequence, of evaluation (expr1), expr2, and expr3 are expressions).
For each of these operators, the evaluation of expression expr1 is guaranteed to occur before the evaluation of
expression expr2 (or expr3, in the case of the conditional expression).

Relying on the execution order of side effects, when none is guaranteed, is a risky practice because results are
inconsistent and not portable. Undesirable side effects usually occur when the same data object is used in two or
more places in the same expression, where at least one use produces a side effect. For example, the following code
fragment produces inconsistent results because the order of evaluation of operands to the assignment operator is
undefined.

int x[4] = { 0, 0, 0, 0 };
int i = 1;
x[i] = i++;

If the increment of i occurs before the subscript is evaluated, the value of x[2] is 1. If the subscript is evaluated
first, the value of x[1] is 1.

A function call also has side effects. In the following example, the order in which f1(y) and f2(z) are called
is undefined:

int y = 0; 
int z = 0;
int x = 0;

int f1(int s)
   {
     printf ("Now in f1\n");
     y += 7;        /*  Storage of y affected   */
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     return y;
    }

int f2(int t)
   {
     printf ("Now in f2\n");
     z += 3;        /*  Storage of z affected   */
     return z;
    }

main ()
{
x = f1(y) + f2(z);     /*  Undefined calling order   */
}

The printf functions can be executed in any order even though the value of x will always be 10.

2.6. Incomplete Type
An identifier can be initially declared as having an incomplete type. An incomplete type declaration describes the
object, but lacks the information needed to determine the object's size. For example, a declaration of an array of
unknown size is an incomplete type declaration:

extern int x[];

The incomplete type may be completed in a subsequent declaration. Incomplete types are most commonly used
when forward referencing arrays, structures, and unions. (Section 2.12, “Forward References” discusses forward
references.) An object of an aggregate type cannot contain a member of an incomplete type; therefore, an aggregate
object (a structure or array member) cannot contain itself, because the aggregate type is not complete until the end
of its declaration. The following example shows how an incomplete structure type is declared and later completed:

struct s 
  { struct t *pt };  /* Incomplete structure declaration  */
.
.
.
struct t
   { int a;
     float *ps };    /*  Completion of structure t        */

The void type is a special case of an incomplete type. It is an incomplete type that cannot be completed, and is
used to signify that a function returns no value. Section 3.5, “void Type” has more information on the void type.

2.7. Compatible and Composite Types
Compatibility between types refers to the similarity of two types to each other. Type compatibility is important
during type conversions and operations. All valid declarations in the same scope that refer to the same object or
function must have compatible types. Two types are compatible if they fit any of the following categories:

• Two types are compatible if they are the same.

• Two qualified types (see Section 3.7, “Type Qualifiers”) are compatible if they are identically qualified and the
two types, unqualified, are compatible. The order of the qualifiers in the type declaration does not matter.

• The types short, signed short, short int, and signed short int are the same and are compatible.

• The types unsigned short and unsigned short int are the same and are compatible.
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• The types int, signed, and signed int are the same and are compatible.

• The types unsigned and unsigned int are the same and are compatible.

• The types long, signed long, long int, signed long int are the same and are compatible.

• The types unsigned long and unsigned long int are the same and are compatible.

• Two array types are compatible if they are of the same size and contain elements of compatible types. If one
array has an unknown size, it is compatible with all other array types having compatible element types.

• Two unions or structures are compatible if they are declared in different compilation units, share the same
members in the same order, and whose members have the same widths (including bit fields).

• Two enumerations are compatible if all members have the same values. All enumerated types are compatible
with other enumerated types. An enumerated type is also compatible with the signed int type.

• Two pointer types are compatible if they are identically qualified and point to objects of compatible types.

• A function type declared using the old-style declaration (such as int tree()) is compatible with another
function type if the return types are compatible.

• A function type declared using the new prototype-style declaration (such as int tree (int x)) is
compatible with another function type declared with a function prototype if:

• The return types are compatible.

• The parameters agree in number (including an ellipsis if one is used).

• The parameter types are compatible. For each parameter declared with a qualified type, its type for
compatibility comparison is the unqualified version of the declared type.

 

• The function type of a prototype-style function declaration is compatible with the function type of an old-
style function declaration if the return types are compatible, and if the old-style declaration is not a definition.
(Different styles of function declarations are discussed in Chapter 5, Functions.) Otherwise, the function type
of a prototype-style function declaration is compatible with the function type of an old-style function definition
if all of the following conditions are met:

• The return types of the two functions are compatible.

• The number of parameters agree.

• The prototype-style function declaration does not contain an ellipsis as a parameter.

• The promoted types of the old-style parameters are compatible with the prototype-style parameter types. In
the following example, the functions tree and tree2 are compatible. tree and tree1 are not compatible,
and tree1 and tree2 are not compatible.

int tree (int);
int tree1 (char);
int tree2 (x)
   char x;   /* char promotes to int in old-style 
                function parameters, and so is 
                compatible with tree             */
   {
   ...
   };

The following types, which may appear to be compatible, are not:

• unsigned int and int types are not compatible.
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• char, signed char, and unsigned char types are not compatible.

Composite Type
A composite type is constructed from two compatible types and is compatible with both of the two types. 
Composite types satisfy the following conditions: 

• If one type is an array of known size, the composite type is an array of that size. Otherwise, if one type is a
variable-length array, the composite type is that type.

• If only one type is a function type with a prototype, the composite type is a function type with the parameter
type list.

• If both types are functions types with prototypes, the type of each parameter in the composite parameter type
list is the composite type of the corresponding parameters.

Consider the following file-scope declarations:

int f(int (*) (), double (*) [3]);
int f(int (*) (char *), double (*)[]);

They result in the following composite type for the function:

int f(int (*) (char *), double (*)[3]);

The previous composite type rules apply recursively to types derived from composite types.

2.8. Linkage
Data objects and functions can be implicitly or explicitly assigned linkage. There are three kinds of linkage:

• Internal linkage—a declaration referring to a data object or function declared in the same compilation unit, and
not known outside the compilation unit.

• External linkage—a declaration referring to a definition of a data object or function known outside the
compilation unit. The definition of the object also has external linkage.

• No linkage—a declaration declaring a unique data object.

When more than one declaration of the same object or function is made, linkage is made. The linked declarations
can be in the same scope or in different scopes. Externally linked objects are available to any function in any
compilation unit used to create the executable file. Internally linked objects are available only to the compilation
unit in which the declarations appear.

The concept of linkage and the static and extern keywords are related, but not directly. Using the extern
keyword in an object's declaration does not guarantee external linkage. The following rules determine the actual
linkage of an object or function:

• An identifier explicitly specified with the auto or register storage class has no linkage.

• An identifier with block scope and the extern storage-class specification has linkage the same as any visible
declaration of the same identifier with file scope. If no such declaration of the object or function is visible, then
the object or function has external linkage.

• The declaration of functions defaults to external linkage. The only other storage class possible for a function
is static, which must be specified explicitly, cannot be applied to a block scope function declaration, and
results in internal linkage.

• The file scope declaration of a data object without an explicit storage class specification, or with the extern
storage class specified, has external linkage.
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• An identifier with file scope and the static storage class has internal linkage.

• An identifier with block scope and without the extern storage-class specification has no linkage.

Identifiers other than data objects and functions have no linkage. An identifier declared as a function parameter
also has no linkage.

The following examples show declarations with different linkages:

extern int x;          /*  External linkage                        */
static int y;          /*  Internal linkage                        */
register int z;        /*  Illegal storage-class declaration       */

main ()                /*  Functions default to external linkage   */
{
    int w;             /*  No linkage                              */
    extern int x;      /*  External linkage                        */
    extern int y;      /*  Internal linkage                        */
    static int a;      /*  No linkage                              */
}

void func1 (int arg1)  /*  arg1 has no linkage                     */
{ }

In VSI C, a message is issued if the same object is declared with both internal and external linkage.

2.9. Tentative Definitions
A declaration of an identifier with file scope, no initializer, and either no storage-class specifier or the static
storage-class specifier is a tentative definition. The tentative definition only applies if no other definition of the
object appears in the compilation unit, in which case all tentative definitions for an object are treated as if there
were only one file scope definition of the object, with an initializer of zero.

If a definition for a tentatively defined object is used later in the compilation unit, the tentative definition is treated
as a redundant declaration of the object. If the declaration of an identifier for an object is a tentative definition and
has internal linkage, the declared type cannot be an incomplete type. Section 2.8, “Linkage” discusses linkage.

The following are examples of tentative definitions:

int i1 = 1;    /* Standard definition with external linkage      */
int i4;        /* Tentative definition with external linkage     */
static int i5; /* Tentative definition with internal linkage     */
int i1;        /* Valid tentative definition, refers to previous */
               /* i1 declaration                                 */

2.10. Storage Classes
Storage classes apply only to data objects and function parameters. However, storage class keywords in C are also
used to affect the visibility of functions. Every data object and parameter used in a program has exactly one storage
class, either assigned explicitly or by default. There are four storage classes:

• auto

• register

• static

• extern
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An object's storage class determines its availability to the linker and its storage duration. An object with external
or internal linkage, or with the storage-class specifier static, has static storage duration, which means that
storage for the object is reserved and initialized to 0 only once, before main begins execution. An object with no
linkage and without the storage-class specifier static has automatic storage duration; for such an object, storage
is automatically allocated on entry to the block in which it is declared, and automatically deallocated on exiting
from the block. An automatic object is not initialized.

When applied to functions, the storage-class specifier extern makes the function visible from other compilation
units, and the storage-class specifier static makes the function visible only to other functions in the same
compilation unit. For example:static int tree(void);

The following sections describe these storage classes.

2.10.1. The auto Class
The auto class specifies that storage for an object is created upon entry to the block defining the object, and
destroyed when the block is exited. This class can be declared only at the beginning of a block, such as at the
beginning of a function's body. For example:

auto int a;        /*  Illegal – auto must be within a block  */

main ()
{
    auto int b;               /*  Valid auto declaration   */
    for (b = 0; b < 10; b++)
      {
        auto int a = b + a;   /*   Valid inner block declaration    */
      }
}

When you use an initializer with an auto object (see Section 4.2, “Initialization”), the object is initialized each
time it is created. Storage is reserved for the object whether the block containing the object is entered through
normal processing of the block or through a jump statement into the block. However, if the block is entered through
a jump statement, initialization of the object is not guaranteed, and if the object is a variable-length array, storage
is not reserved.

The auto class is the default for objects with block scope. Objects with the auto class are not available to the
linker.

Note

Entering an enclosed block suspends, but does not end, execution of the enclosing block. Calling a function from
within a block suspends, but does not end, execution of the block containing the call. Automatic objects with
reserved storage maintain their storage in these cases.

2.10.2. The register Class
The register class identifies the assigned object as frequently used, suggesting to the compiler that the object
should be assigned a register to minimize access time.  register is never the default class; it must be explicitly
specified.

The register class has the same storage duration as the auto class; that is, storage is created for a register
object upon entry to the block defining the object, and destroyed when the block is exited.

The register class is the only storage class that can be explicitly specified for function parameters.

The VSI C compiler uses sophisticated register allocation techniques that make the use of the register keyword
unnecessary.
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2.10.3. The static Class
The static class specifies that space for the identifier is maintained for the duration of the program. Static
objects are not available to the linker. Therefore, another compilation unit can contain an identical declaration that
refers to a different object.

A static object can be declared anywhere a declaration may appear in the program; it does not have to be at the
beginning of a block, as with the auto class. If a data object is declared outside a function, it has static duration
by default—it is initialized only once at the beginning of the program.

Expressions used to initialize static objects must be constant expressions. If the object with static storage
duration is not explicitly initialized, every arithmetic member of that object is initialized to 0, and every pointer
member is initialized as a null pointer constant. See Section 4.2, “Initialization” for more information on initializing
objects of various data types.

2.10.4. The extern Class
The extern class is the default class for objects with file scope. Objects outside of any function (an external
definition) receive the extern class storage unless explicitly assigned the static keyword in the declaration.
The extern class specifies the same storage duration as static objects, but the object or function name is not
hidden from the linker. Using the extern keyword in a declaration results in external linkage in most cases (see
Section 2.8, “Linkage”), and results in static duration of the object.

2.11. Storage-Class Modifiers
VSI C provides the following storage-class modifiers:

__inline
__forceinline
__align
inline

The first three modifiers listed are recognized as valid keywords in all compiler modes on all platforms. They
are in the namespace reserved to the C implementation, so it is not necessary to allow them to be treated as user-
declared identifiers. They have the same effects on all platforms, except that on OpenVMS VAX systems, the
__forceinline modifier does not cause any more inlining than the  __inline modifier does.

The inline storage-class modifier is supported in relaxed ANSI C mode or if the /ACCEPT=C99_KEYWORDS
(OVMS) or /ACCEPT=GCCINLINE (OVMS) qualifier is specified.

Note

HP C for OpenVMS Systems also provides support for the storage-class modifiers noshare, readonly, and
_align as VAX C keywords. For more information about these storage-class modifiers, see the VSI C User's
Guide for OpenVMS Systems (OVMS).

You can use a storage-class specifier and a storage-class modifier in any order. Usually, the modifier is placed
after the specifier in the source code. For example:

extern  noshare  int  x;

   /*  Or, equivalently…  */

int  noshare  extern  x;

However, placing the storage-class specifier anywhere other than first is obsolescent.
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The following sections describe each of the VSI C storage-class modifiers.

2.11.1. The __inline Modifier
The  __inline storage-class modifier marks a function for inline expansion. Using  __inline on a function
definition and prototype tells the compiler that it can substitute the code within the function definition for every
call to that function. Substitution occurs at the discretion of the compiler. The _ _inline storage-class modifier
has the same effect as the #pragma inline preprocessor directive, except that #pragma inline attempts to
provide inline expansion for all functions in a translation unit, rather than for selected functions (See your platform-
specific VSI C documentation for more information on #pragma inline).

Use the following form to designate a function for inline expansion:

 __inline [type]  function_definition

The compiler issues a warning if  __inline is used in /STANDARD=PORTABLE mode, because this is an
implementation-specific extension.

Here is an example of using _ _inline:

/* prototype */

 __inline int x (float y);

/* definition */
 __inline int x (float y)

{
   return (1.0);
}

2.11.2. The inline Modifier
Similar to the  __inline storage-class modifier, the inline storage-class modifier can be used as a declaration
specifier in the declaration of a function.

The inline storage-class modifier is supported in relaxed ANSI C mode or if the /ACCEPT=C99_KEYWORDS
(OVMS) or /ACCEPT=GCCINLINE (OVMS) qualifier is specified.

With static functions, inline has the same effect as applying _ _inline or #pragma inline to the
function.

However, when inline is applied to a function with external linkage, besides allowing calls within that
translation unit to be inlined, the inline semantics provide additional rules that also allow calls to the function
to be inlined in other translation units or for the function to be called as an external function, at the compiler's
discretion:

• If the inline keyword is used on a function declaration with external linkage, then the function must also be
defined in the same translation unit.

• If all of the file-scope declarations of the function use the inline keyword but do not use the extern
keyword, then the definition in that translation unit is called an inline auxiliary definition, and no externally-
callable (global) definition is produced by that compilation unit.

Otherwise, the compilation unit does produce an externally-callable definition.

• An inline auxiliary definition must not contain a definition of a modifiable object with static storage duration,
and it must not refer to an identifier with internal linkage. These restrictions do not apply to the externally-
callable definition.
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• As usual, at most one compilation unit in an entire program can supply an externally-callable definition of a
given function.

• Any call to a function with external linkage might be translated as a call to an external function, regardless of
the presence of the inline qualifier. It follows from this and the previous point that any function with external
linkage that is called must have exactly one externally-callable definition among all the compilation units of
an entire program.

• The address of an inline function with external linkage is always computed as the address of the unique
externally-callable definition, never the address of an inline definition.

• A call to an inline function made through a pointer to the externally-callable definition may still be inlined or
translated as a call to an inline definition, if the compiler can determine the name of the function whose address
was stored in the pointer.

• Without the inline keyword, a function definition in a header file produces MULDEF errors at link time, if
the header file is included by more than one translation unit. Specifying inline on such a function definition
is one way to eliminate these MULDEF errors. See the example (Section 2.11.2.1, “Example – Using the inline
Function Specifier”).

Note
This section describes the semantics of the C99 Standard inline keyword.

The gcc compiler implements an inline function declaration specifier for functions with external linkage that gives
similar capabilities to this C99 inline feature, but the details of usage are somewhat different: essentially, the
combination of extern and inline keywords makes an inline definition, instead of the exclusive use of the
inline keyword without the extern keyword.

The /ACCEPT=[NO]GCCINLINE qualifier controls which variation of the feature is implemented.

2.11.2.1. Example – Using the inline Function Specifier
Consider the following C code, which results in a multiply defined function identifier (my_max):

$ type t.h
int my_max (int x, int y)
{
    if (x >= y)
        return (x);
    else
        return (y);
}
$
$ type a.c
#include "t.h"

main()
{
    int a =1;
    int b=2;

    func1();
    my_max(func1(a,b),20);
}
$
$ type b.c
#include "t.h"
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void func1(int p1, int p2)
{
    my_max(p1,p2);
}
$
$ link a,b
%LINK-W-MULDEF, symbol MY_MAX multiply defined
        in module B file DISK$:[TEST.TMP]B.OBJ;4

One way around this problem is to define the function my_max with the keyword static:

static int my_max (int x, int y)
{
    if (x >= y)
        return (x);
    else
        return (y);
}

However, this means there is no globally visible my_max function but, rather, a copy of my_max for each module,
each copy with a different address. Therefore, any function pointer comparisons would break.

The ISO C99 solution to this problem is the inline keyword. Adding inline to the header file t.h eliminates
the MULDEF errors:

inline int my_max (int x, int y)
{
    if (x >= y)
        return (x);
    else
        return (y);
}

This type of function definition, like one specified with the  __inline keyword, marks the function for potential
inlining by the compiler. One difference, however, is that for an inline function, the compiler creates an inline
auxiliary definition of the function, which is associated with the function being declared (my_max in this example).
The compiler is then free to do one of the following:

1. Call the auxiliary function.

2. Call the global function (my_max). This implies that there must be a global definition of any non-static
inline function in one of the modules of the application.

3. Generate inlined code for the call to my_max.

There can be one and only one global definition for the inline function within an application. There can be one
inline auxiliary definition per module, or many prototype declarations of the auxiliary function per module.

You can create a global inline definition by including in one of your modules (such as a.c in our example) a file-
scope function declaration that:

1. Omits the inline keyword:

#include "t.h"
int my_max (int x, int y);

OR

#include "t.h"
extern int my_max (int x, int y);

2. Or that specifies the extern storage class with the inline keyword:
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#include "t.h"
extern inline int my_max (int x, int y);

Note
Taking the address of an inline function always resolves to the global function, never the auxiliary function.

2.11.3. The __forceinline Modifier
Similar to the  __inline storage-class modifier, the _ _forceinline storage-class modifier marks a
function for inline expansion. However, using  __forceinline on a function definition and prototype tells
the compiler that it must substitute the code within the function definition for every call to that function. (With
__inline, such substitution occurs at the discretion of the compiler.)

On OpenVMS VAX systems, the  __forceinline storage-class modifier does not cause any more inlining
to occur than the  __inline modifier does.

Use the following form to designate a function for forced inline expansion:

 __forceinline [type]  function_definition

The compiler issues a warning if  __forceinline is used in /STANDARD=PORTABLE mode, because this
is an implementation-specific extension.

2.11.4. The __align Modifier
The  __align and _align storage-class modifiers have the same semantic meaning. The difference is that
__align is a keyword in all compiler modes while _align is a keyword only in modes that recognize VAX C
keywords. For new programs, using  __align is recommended.

The  __align storage-class modifier aligns objects of any of the VSI C data types on a specified storage
boundary. Use the  __align modifier in a data declaration or definition.

For example, to align an integer on the next quadword boundary, you can use any of the following declarations:

int   __align( QUADWORD )  data;
int   __align( quadword )  data;
int   __align( 3 )  data;

When specifying the boundary of the data alignment, you can either use a predefined constant or specify an integer
value that is a power of 2. These constants, or explicit powers of 2, tell VSI C the number of bytes to pad in order
to align the data. In the previous example, int __align ( 3 ) specifies an alignment of 23 bytes, which
is 8 bytes—a quadword of memory.

Table 2.1, “Predefined Alignment Constants” presents all the predefined alignment constants, their equivalent
power of 2, and their equivalent number of bytes. Note that for OpenVMS VAX systems, you can specify the
constants 0, 1, 2, 3, 4, or 9. For OpenVMS Alpha systems, you can specify any constant from 0 to 16.

Table 2.1. Predefined Alignment Constants

Constant Power of 2 Number of Bytes

BYTE or byte 0 1
WORD or word 1 2
LONGWORD or longword 2 4
QUADWORD or quadword 3 8
OCTAWORD or octaword 4 16
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Constant Power of 2 Number of Bytes

5 (Alpha, I64) 32
6 (Alpha, I64) 64
7 (Alpha, I64) 128
8 (Alpha, I64) 256
9 512
10 (Alpha, I64) 1024
11 (Alpha, I64) 2048
12 (Alpha, I64) 4096
13 (Alpha, I64) 8192
14 (Alpha, I64) 16384
15 (Alpha, I64) 32768

PAGE or page 16 (Alpha, I64) 9 (VAX only) 65,536 (Alpha, I64) 512 (VAX
only)

2.12. Forward References
Once declared, identifiers can be used freely. Using an identifier before its declaration is called a forward reference,
and results in an error, except in the following cases:

• When a goto statement refers to a statement label before the label's declaration

• When a structure, union, or enumeration tag is used before it is declared

Here are some examples of valid and invalid forward references:

int a;
main ()
{
 int b = c;           /*  Forward reference to c – illegal         */
 int c = 10;
 glop x = 1;          /*  Forward reference to glop type – illegal */
 typedef int glop;
 goto test;           /*  Forward reference to statement label --
                          legal                                     */
test:  
 if (a > 0 ) b = TRUE;
}

The following example shows the use of a structure tag in a forward reference:

struct s 
  { struct t *pt };    /*  Forward reference to structure t         */
.                      /* (Note that the reference is preceded      */
.                      /* by the  struct keyword to resolve         */
.                      /* potential ambiguity)                      */
struct t
   { struct s *ps };

2.13. Tags
Tags can be used with structures, unions, or enumerated types as a means of referring to the structure, union,
or enumerated type elsewhere in the program. Once a tag is included in the declaration of a structure, union,
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or enumerated type, it can specify the declared structure, union, or enumerated type anywhere the declaration is
visible.

The following code fragment shows the use of a structure tag, a union tag, and an enumerated type tag: 

struct tnode {                 /*  Initial declaration –             */
                               /*  tnode is the structure tag         */
 int count;
 struct tnode *left, *right;   /*  tnode's members referring to tnode */
 union datanode *p;            /*  forward reference to union type is 
                                   declared below                     */
};

union datanode {               /*  Initial declaration –             */
                               /*  datanode is the union tag          */
 int ival;
 float fval;
 char *cval;
} q = {5};
                  

enum color { red, blue, green };/*  Initial declaration –            */
.                               /*  color is the enumeration tag      */
.
.
struct tnode x;                /*   tnode tag is used to declare x    */
enum color z = blue;           /*   color tag declares z to be of 
                                    type color;  z is also 
                                    initialized to blue               */

As shown in the previous example, once a tag is declared it can be used to reference other structure, union, or
enumerated type declarations in the same scope without fully redefining the object.

Tags can be used to form an incomplete type if they occur before the complete declaration of a structure or union.
Incomplete types do not specify the size of the object; therefore, a tag introducing an incomplete type can only be
used when the size of the object is not needed. To complete the type, another declaration of the tag in the same
scope must define the object completely. The following example shows how a subsequent definition completes
the incomplete declaration of the structure type s:

struct s;            /*  Tag s used in incomplete type declaration */
struct t { 
  struct s *p;     
};
struct s { int i; };/*  struct s definition completed              */

Section 2.6, “Incomplete Type” describes the concept of an incomplete type.

Consider the following declarations:

struct tag;

union tag;

These declarations specify a structure or union type and declare a tag visible only within the scope of the
declaration. The declaration specifies a new type distinct from any other type with the same tag in an enclosing
scope (if any).

The following example shows the use of prior tag declarations to specify a pair of mutually-referential structures:
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struct s1 { struct s2 *s2p; /*...*/ };  /* D1  */
struct s2 { struct s1 *s1p; /*...*/ };  /* D2  */

If s2 was declared as a tag in an enclosing scope, the declaration D1 would refer to s2, not to the tag s2 declared
in D2. To eliminate this context sensitivity, the following declaration can be inserted ahead of D1:

struct s2;

This declares a new tag s2 in the inner scope; the declaration D2 then completes the specification of the type.

2.14. lvalues and rvalues
An rvalue is the value of an expression, such as 2, or x + 3, or (x + y) * (a - b). rvalues are not allocated
storage space. Examples of rvalues are the numbers 0 and 1 in the following code fragment:

if (x > 0)
   {
     y += 1;
   }
x = *y;        /*  The value pointed to by y is assigned to x   */

The identifiers x and y are objects with allocated storage. The pointer to y holds an lvalue.

An lvalue is an expression that describes the location of an object used in the program. The location of the object is
the object's lvalue, and the object's rvalue is the value stored at the location described by the lvalue. The following
operators always produce lvalues:

[]
*
->

The dot operator ( . ) can, and usually does, produce an lvalue but it does not have to do so. For example, f().m
is not an lvalue.

A modifiable lvalue is an lvalue that does not have array type, an incomplete type, a const-qualified type, or, if
it is a structure or union, has no member with const-qualified type.

2.15. Name Spaces
Name spaces are identifier classifications based on the context of the identifier's use in the program. Name spaces
allow the same identifier to simultaneously stand for an object, statement label, structure tag, union member,
and enumeration constant. Simultaneous use of an identifier in the same scope for two different entities without
ambiguity is possible only if the identifiers are in different name spaces. The context of the identifier's use resolves
the ambiguity over which of the identically named entities is desired.

There are four different name spaces:

• Statement labels

• Structure, union, and enumeration tags

• Each structure and union member set

• Other identifiers (variables, functions, type definitions, and enumeration constants)

For example, the identifier flower can be used in one block to stand for both a variable and an enumeration tag,
because variables and tags are in different name spaces. Subsequently, an inner block can redefine the variable
flower without disturbing the enumeration tag flower. Therefore, when using the same identifier for various
purposes, analyze the name space and scope rules governing the identifier. Section 2.3, “Scope” presents the scope
rules.
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A structure, union, and enumeration member name can be common to each of these objects at the same time. The
use of the structure, union, or enumeration name in the reference to the member resolves any ambiguity about
which identifier is meant. However, the structure, union, or enumeration tag must be unique, since the tags of these
three object types share the same name space.

2.16. Preprocessing
The translation of a C program occurs in several phases. Normally, when the compiler is started, several events
occur before the actual compiler starts: 

1. Trigraph sequences (if any) are replaced by single-character internal representations.

2. Each occurrence of a new-line character immediately preceded by a backslash character is deleted and the
following line is spliced to form one logical line.

3. The source file is decomposed into preprocessing tokens and sequences of white-space characters. Each
comment is replaced by one space character.

4. Preprocessing directives are executed and preprocessor macros are expanded. Files named in #include
preprocessing directives are processed through these four steps recursively.

5. Each source character set member, and each escape sequence in character constants and string literals is
converted to a member of the execution character set.

6. Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are concatenated.

7. The resulting stream of tokens is analyzed and translated.

8. The linking phase. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current compilation unit. All such linker
output is collected into a program image.

The fourth step is called preprocessing, and is handled by a separate unit of the compiler.  Each preprocessor
directive appears on a line beginning with a pound sign (#); white space may precede the pound sign. These
lines are syntactically independent from the rest of the C source file, and can appear anywhere in the source file.
Preprocessor directive lines terminate at the end of the logical line.

It is possible to preprocess a source file without actually compiling the program (see your platform-specific VSI
C documentation for the available compiler options.) Chapter 8, Preprocessor Directives and Predefined Macros
discusses the preprocessing directives.

2.17. Type Names
In several contexts a type name can or must be specified without an identifier. For example, in a function
prototype declaration, the parameters of the function can be declared only with a type name. Also, when casting
an object from one type to another, a type name is required without an associated identifier. (Section 6.4.6, “The
Cast Operator” has information on casting, and Section 5.5, “Function Prototypes” has information on function
prototypes.) This is accomplished using a type name, which is a declaration for a function or object which omits
the identifier.

Table 2.2, “Type Name Examples” shows examples of type names with the associated types they refer to.

Table 2.2. Type Name Examples

Construction Type Name

int int

int * Pointer to int
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Construction Type Name

int *[3] Array of three pointers to int
int (*)[3] Pointer to an array of three ints
int *() Function with no parameter specification returning a

pointer to int
int (*) (void) Pointer to function with no parameters returning an

int

int (*const []) (unsigned int, ...) Array of an unspecified number of const pointers
to functions, each with one parameter that has type
unsigned int and an unspecified number of other
parameters, returning an int

Table 2.2, “Type Name Examples” also provides good examples of abstract declarators. An abstract declarator is
a declarator without an identifier. The characters following the int type name form an abstract declarator in each
case. The *,[], and ( ) characters all indicate a declarator without naming a specific identifier.

38



Data Types

Chapter 3. Data Types
The type of a data object in C determines the range and kind of values an object can represent, the size of machine
storage reserved for an object, and the operations allowed on an object. Functions also have types, and the function's
return type and parameter types can be specified in the function's declaration.

 The following sections discuss these topics:

• Data sizes (Section 3.1, “Data Sizes”)

• Integral types (Section 3.2, “Integral Types”)

• Floating-point types (Section 3.3, “Floating-Point Types”)

• Derived types (Section 3.4, “Derived Types”), including:

• Function type (Section 3.4.1, “Function Type”)

• Pointer type (Section 3.4.2, “Pointer Type”)

• Array type (Section 3.4.3, “Array Type”)

• Structure type (Section 3.4.4, “Structure Type”)

• Union type (Section 3.4.5, “Union Type”)

• The void type (Section 3.5, “void Type”)

• Enumerated types (Section 3.6, “Enumerated Types”)

• Type qualifiers (Section 3.7, “Type Qualifiers”)

• Type definition (Section 3.8, “Type Definition”)

The selection of a data type for a given object or function is one of the fundamental programming steps in any
language. Each data object or function in the program must have a data type, assigned either explicitly or by
default. (Chapter 4, Declarations discusses the assignment of a data type to an object.) C offers a wide variety of
types. This diversity is a strong feature of C, but can be initially confusing.

To help avoid this confusion, remember that C has only a few basic types. All other types are derived combinations
of these basic types. Some types can be specified in more than one way; for example, short and short int
are the same type. (In this manual, the longest, most specific name is always used.) Type is assigned to each object
or function as part of the declaration. Chapter 4, Declarations describes declarations in more detail.

Table 3.1, “Basic Data Types” lists the basic data types:  integral types (objects representing integers within
a specific range), floating-point types (objects representing numbers with a significand part—a whole number
plus a fractional number—and an optional exponential part), and character types (objects representing a printable
character). Character types are stored as integers.

Note
Enumerated types are also normally classified as integral types, but for the purposes of clarity they are not listed
here. See Section 3.6, “Enumerated Types” for more information.
 

Table 3.1. Basic Data Types

Integral Types Floating Point Types

short int float

signed short int double
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Integral Types Floating Point Types

unsigned short int long double

int float _Complex (Alpha, I64)
signed int double _Complex (Alpha, I64)
unsigned int long double _Complex (Alpha, I64)
_Imaginary

In VSI C, use of the _Imaginary keyword produces
a warning, which is resolved by treating it as an
ordinary identifier.
long int

signed long int

unsigned long int

long long int (Alpha, I64)
signed long long int (Alpha, I64)
unsigned long long int (Alpha, I64)
_Bool

Integral Character Types
char

signed char

unsigned char

The integral and floating-point types combined are called the arithmetic types.  See Section 3.1, “Data Sizes” for
information about the size and range of integral and floating-point values.

A large variety of derived types can be created from the basic types. Section 3.4, “Derived Types” discusses the
derived types.

Besides the basic and derived types, there are three keywords that specify unique types: void, enum, and
typedef:

• The void keyword specifies a special type indicating no value, or it can be used with the pointer operator (*)
to indicate a generic pointer type. See Section 3.5, “void Type” for more information on the void type.

• The enum keyword specifies an integer type of your own design, specifying the acceptable values of the type
to a predefined set of named integer constant values. Enumerated types are stored as integers, except in the
compiler's RELAXED mode, in which other types are allowed. See Section 3.6, “Enumerated Types” for a
detailed description of enumerated types.

• The typedef keyword specifies a synonym for a type made from one or more basic or derived types. See
Section 3.8, “Type Definition” for more information on creating type definitions.

There are also the type-qualifier keywords:

• const, used to prevent write access to an object (see Section 3.7.1, “const Type Qualifier”)

• volatile, used to restrict the optimizations that might otherwise be performed on references to an object (see
Section 3.7.2, “volatile Type Qualifier”)

• __unaligned (Alpha, I64), used in pointer definitions, to indicate to the compiler that the data pointed to is
not properly aligned on a correct address

• __restrict (for pointer type only), used to designate a pointer as pointing to a distinct object, thus allowing
compiler optimizations to be made (see Section 3.7.4, “__restrict Type Qualifier”)

40



Data Types

Using a qualifying keyword in the type declaration of an object results in a qualified type. See Section 3.7, “Type
Qualifiers” for general information on type qualifiers.

With such a wide variety of types, operations in a program often need to be performed on objects of different types,
and parameters of one type often need to be passed to functions expecting different parameter types. Because C
stores different kinds of values in different ways, a conversion must be performed on at least one of the operands or
arguments to convert the type of one operand or argument to match that of the other. You can perform conversions
explicitly through casting, or implicitly through the compiler. See Section 6.11, “Data-Type Conversions” for more
information on data-type conversions. See Section 2.7, “Compatible and Composite Types” for a description of
type compatibility.

See your platform-specific VSI C documentation for a description of any implementation-defined data types.

3.1. Data Sizes
An object of a given data type is stored in a section of memory having a discreet size. Objects of different data
types require different amounts of memory. Table 3.2, “Sizes and Ranges of Data Types” shows the size and range
of the basic data types.  

Table 3.2. Sizes and Ranges of Data Types

Type Size Range

Integral Types
short int, or signed short
int

16 bits -32768 to 32767

unsigned short int 16 bits 0 to 65535
int or signed int 32 bits -2147483648 to 2147483647
unsigned int 32 bits 0 to 4294967295
long int, or signed long
int (OVMS)

32 bits -2147483648 to 2147483647

long int, or signed long
int (T64 UNIX)

64 bits -9223372036854775808 to
9223372036854775807

unsigned long int (OVMS) 32 bits 0 to 4294967295
unsigned long int (T64
UNIX)

64 bits 0 to 18446744073709551615

signed long long int
(Alpha, I64), signed __int64
(Alpha, I64)

64 bits -9223372036854775808 to
9223372036854775807

unsigned long long
int (Alpha, I64), unsigned
__int64 (Alpha, I64)

64 bits 0 to 18446744073709551615

Integral Character Types
char and signed char 8 bits -128 to 127
unsigned char 8 bits 0 to 255
wchar_t 32 bits 0 to 4294967295
Floating-Point Types (range is for absolute value)
float 32 bits 1.1 x 10-38 to 3.4 x 1038

double 64 bits 2.2 x 10-308 to 1.7 x 10308

long double (OVMS Alpha,
I64)

128 bits 3.4 x 10-49321 to 1.2 x 101049321
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Type Size Range

long double (OVMS VAX, T64
UNIX)

Same as double Same as double

Derived types can require more memory space.

See your platform-specific VSI C documentation for the sizes of implementation-defined data types.

3.2. Integral Types
In C, an integral type can declare:   

• Integer values, signed or unsigned

• Boolean values, where 0 is equivalent to false and any nonzero number is equivalent to true

• Characters, which are automatically converted to an integer value by the compiler

• Members of an enumerated type, which are interpreted as an integer by the compiler

• Bit fields

The integral types are:

• char, signed char, unsigned char – 8 bits

• short int, signed short int, and unsigned short int – 16 bits

• _Bool – 1 byte

• int, signed int, unsigned int – 32 bits

• long int, signed long int, and unsigned long int – 32 bits (OVMS)

• long int, signed long int, and unsigned long int – 64 bits (T64 UNIX)

• signed long long int (Alpha, I64) and unsigned long long int (Alpha, I64) – 64 bits

• signed __int64 (Alpha, I64) and unsigned __int64 (Alpha, I64) – 64 bits

• enum – 32 bits

3.2.1. Non-Character Types
For VSI C on OpenVMS systems, storage for int and long is identical. Similarly, storage of signed int and
signed long is identical, and storage for unsigned int and unsigned long is identical.

For VSI C on Tru64 UNIX systems, storage for the int data types is 32 bits, while storage for the long int
data types is 64 bits.

The 64-bit integral types signed long long int and unsigned long long int, and their equivalents
signed __int64 and unsigned __int64 are provided on Alpha and Itanium processors only. Note: the
__int64 and long long int data types (both signed and unsigned) can be used interchangeably, except for
use with pointer operations, in which case the pointer types must be identical:

__int64 *p1;
__int64 *p2;
long long int *p3;
.
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.

.
p1 = p2; // valid
p1 = p3; // invalid

For each of the signed integral types, there is a corresponding unsigned integral type that uses the same amount of
storage.  The unsigned keyword with the integral type modifies the way the integer value is interpreted, which
allows the storage of a larger range of positive values. When using the unsigned keyword, the bits are interpreted
differently to allow for the increased positive range with the unsigned type (at the expense of the negative range
of values). For example:

signed short int x = 45000;  /*  ERROR – value too large for short int  */
unsigned short int y = 45000;/*  This value is OK                        */

The range of values for the signed short int type is -32,768 to 32,767. The range of values for the
unsigned short int type is 0 to 65,535.

A computation involving unsigned operands can never overflow, because any result outside the range of the
unsigned type is reduced to fit the type by the rules of modulus arithmetic. If the result cannot be represented
by the resulting integer type, the result is reduced modulo the number that is one greater than the largest value
that can be represented by the resulting unsigned integer type. This means that the low-order bits are kept, and the
high-order bits of the mathematical result that do not fit in the type of the result are discarded. For example:

unsigned short int z = (99 * 99999); /*  Value of y after evaluation is
 3965  */

VSI C treats the plain char type as signed by default for compatibility with VAX C and many other C compilers.
However, a command-line option can control this, and a predefined macro can be tested to determine the setting of
the option in a given compilation. On Alpha systems, unsigned char might offer some performance advantage
for character-intensive processing.

An unsigned integer of n bits is always interpreted in straight unsigned binary notation, with possible values
ranging from 0 to 2n-1.

Note

The interpretation of signed integers depends on the size of machine representation and the encoding technique
used on the machine. With two's-complement representation, signed integers of n bits have a range of -2n-1 to 2n-1-1.

  The C99-specified _Bool data type is available in all modes of the compiler except VAX C, common, and strict
ANSI89 modes. A _Bool object occupies a single byte of storage and is treated as an unsigned integer,
but its value can be only 0 or 1.

Notes

• A bit field can be declared to be type _Bool.

• A pointer can be converted to a _Bool type.

• When any scalar value is converted to _Bool, the result is 0 if the value compares equal to 0 (for example,
if the pointer is NULL). Otherwise, the result is 1. This is one way the _Bool type is different than the other
integer types. In the following example, the value of b is zero, but the value of c is 1:

double a = .01;
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int b = a;
_Bool c = a;

• The _Bool type is intended to be used in conjuction with a new standard header, <stdbool.h>, but that is
not required. The content of the new header is:

#define bool _Bool 
#define true 1 
#define false 0 
#define __bool_true_false_are_defined 1 

Also see Section 9.11, “Boolean Type and Values(<stdbool.h>)”.

3.2.2. Character Types
Character types are declared with the keyword char and are integral types. Using char objects for nonintegral
operations is not recommended, as the results are likely to be nonportable. An object declared as a char type can
always store the largest member of the source character set. 

Valid character types are:

• char

• signed char

• unsigned char

• wchar_t

The wide character type wchar_t is provided to represent characters not included in the ASCII character set. 
The wchar_t type is defined using the typedef keyword in the <stddef.h> header file. Wide characters
used in constants or strings must be preceded with an L. For example:

#include <stddef.h>
wchar_t a[6] = L"Hello";

All char objects are stored in 8 bits. All wchar_t objects are stored as unsigned int objects in 32 bits.
The value of a given character is determined by the character set being used. In this text, the ASCII character set
is used in all examples. See Appendix C, ASCII Equivalence Table for a complete list of ASCII equivalents, in
decimal, octal, and hexadecimal radixes.

To aid portability, declare char objects that will be used in arithmetic as signed char or unsigned char.
For example:

signed char letter;
unsigned char symbol_1, symbol_2;
signed char alpha = 'A';  /* alpha is declared and initialized as 'A' */

Strings are arrays of characters terminated by the null character (\0). Section 1.9.3, “Character Constants” has
more information on the syntactic rules of using strings; Chapter 4, Declarations has information on declaring
string literals.

3.3. Floating-Point Types
The floating-point types are:
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• float – 32 bits

• double – 64 bits

• long double (OVMS Alpha) – 128 bits by default, with the option for 64 bits

• long double (T64 UNIX) – 64 bits in current versions of Tru64 UNIX

• long double (VAX) – 64 bits

• float _Complex (Alpha, I64)

• double _Complex (Alpha, I64)

• long double _Complex (Alpha, I64)

Use the floating-point types for variables, constants, and function return values with fractional parts, or where the
value exceeds the storage range available with the integral types. The following examples show sample floating-
point type declarations (and initializations):

float x = 35.69;
double y = .0001;
double z = 77.0e+10;
float Q = 99.9e+99;                 /*  Exceeds allowable range   */

3.3.1. Complex Type (Alpha, I64)
The C99 standard introduces a built-in complex data type similar to the Fortran type, in all three precisions (float
_Complex, double _Complex, and long double _Complex). It also has an associated header file,
<complex.h> The <complex.h> header file defines a macro spelled "complex", intended to be the preferred
way to refer to the types. (See Section 9.2, “Complex Arithmetic(<complex.h>)”).

A complex type has the same representation and alignment requirements as an array type containing exactly two
elements of the corresponding real type; the first element is equal to the real part, and the second element to the
imaginary part, of the complex number.

The type is similar to the Fortran type in its use. There is no special syntax for constants; instead there is a new
keyword _Complex_I, which has a complex value whose real part is zero and whose imaginary part is 1.0.
The header file defines a macro I that expands to _Complex_I, and so a complex constant with equal real and
imaginary parts of 2.0 would be written as 2.0 + 2.0*I.

There are some known issues with complex types on VSI C:

• The complex data types are not available when using the /FLOAT=D_FLOAT command-line option. This is
a permanent restriction.

• The complex types and functions other than long double complex are available on versions of OpenVMS
prior to Version 7.3. The long double complex type is available with OpenVMS Version 7.3.

• Initialized declarations of long double complex variables cause a compiler assertion failure when
generating a machine-code listing.

• Functions named cabs, cabsf, and cabsl have traditionally been declared in <math.h> using a struct
representation to hold two floating values. This is not compatible with the calling standard for passing complex
values. To access working cabs functions, you must include <complex.h> before you include <math.h>.

3.3.2. Imaginary Type (Alpha, I64)
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The C99 standard reserves the keyword _Imaginary for use as a type-specifier in conjunction with an
experimental/optional feature called a "pure imaginary" type, specified in informative Annex G. In VSI C, use of
the _Imaginary keyword produces a warning, which is resolved by treating it as an ordinary identifier.

3.4. Derived Types
There are five derived types in C: 

• Function types

• Pointer types

• Array types

• Structure types

• Union types

The following sections describe these derived types.

A derived type is formed by using one or more basic types in combination. Using derived types, an infinite variety
of new types can be formed. The array and structure types are collectively called the aggregate types.  Note that
the aggregate types do not include union types, but a union may contain an aggregate member.

3.4.1. Function Type
A function type describes a function that returns a value of a specified type.  If the function returns no value, it
should be declared as "function returning void" as follows:

void function1 ();

In the following example, the data type for the function is "function returning int": 

int uppercase(int lc) 
{
  int uc = lc + 0X20;
  return uc;
}

Chapter 4, Declarations discusses declarations in general. Chapter 5, Functions covers functions specifically,
including their declarations, parameters, and argument passing.

3.4.2. Pointer Type
A pointer type describes a value that represents the address of an object of a stated type. A pointer is stored as an
integral value that references the address of the target object. Pointer types are derived from other types, called
the referenced type of the pointer. For example: 

int *p;          /*  p is a pointer to an int type                 */
double *q();     /*  q is a function returning a pointer to an 
                     object of type double                         */
int (*r)[5];     /*  r is a pointer to an array of five elements   */
                 /*  (r holds the address to the first element of 
                     the array)                                    */
const char s[6]; /*  s is a const-qualified array of 6 elements    */

The pointer itself can have any storage class, but the object addressed by the pointer cannot have the register
storage class or be a bit field. Pointers to qualified or unqualified versions of compatible types have the same
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representation and alignment requirements as the target type. Pointers to other types need not have the same
representation or alignment requirements.

  The construction void * designates a generic “pointer to void” type. The void * construction can be used
to point to an object of any type, and it is most useful when a pointer is needed to point to the address of objects
with different or unknown types (such as in a function prototype). A pointer to void can also be converted to
or from a pointer of any other type, and has the same representation and alignment requirements as a pointer to
a character type.

 A pointer to the address 0 (zero) is called a null pointer. Null pointers are often used to indicate that no more
members of a list exist (for example, when using pointers to show the next member of the list). Dereferencing a
null pointer with the * or subscripting operators leads to unpredictable and usually very unfavorable results.

See Chapter 4, Declarations for details on the syntax of pointer declarations.

3.4.3. Array Type
An array type can be formed from any valid completed type.  Completion of an array type requires that the number
and type of array members be explicitly or implicitly specified. The member types can be completed in the same or
a different compilation unit. Arrays cannot be of void or function type, since the void type cannot be completed
and function types are not object types requiring storage.

 Typically, arrays are used to perform operations on some homogeneous set of values. The size of the array type
is determined by the data type of the array and the number of elements in the array. Each element in an array has
the same type. For example, the following definition creates an array of four characters:

char x[] = "Hi!"   /*  Declaring an array x   */;

Each of the elements has the size of a char object, 8 bits. The size of the array is determined by its initialization;
in the previous example, the array has three explicit elements plus one null character. Four elements of 8 bits each
results in an array with a size of 32 bits.

An array is allocated contiguously in memory, and cannot be empty (that is, have no members). An array can have
only one dimension. To create an array of “two dimensions,” declare an array of arrays, and so on.

It is possible to declare an array of unknown size; this sort of declaration is called an incomplete array declaration,
because the size is not specified. The following example shows an incomplete declaration: 

int x[];

The size of an array declared in this manner must be specified elsewhere in the program. (See Section 4.7,
“Declaring Arrays” for more information on declaring incomplete arrays and initializing arrays.)

Character strings (string literals) are stored in the form of an array of char or wchar_t type, and are terminated
by the null character (0).

An array in C has only one dimension. An array of arrays can be declared, however, to create a multidimensional
array.  The elements of these arrays are stored in increasing addresses so that the rightmost subscript varies most
rapidly. This is called row-major order, and is analogous to a car's odometer. For example, in an array of two arrays
declared as int a[2][3]; the elements are stored in this order:

a[0][0], a[0][1], a[0][2], a[1][0], a[1][1], a[1][2]

3.4.4. Structure Type
A structure type is a sequentially allocated nonempty set of objects, called members. Structures let you group
heterogeneous data. They are much like records in Pascal. Unlike arrays, the elements of a structure need not be of
the same data type. Also, elements of a structure are accessed by name, not by subscript. The following example
declares a structure employee, with two structure variables (ed and mary) of the structure type employee:
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struct employee { char name[30]; int age; int empnumber; };
struct employee ed, mary;

Structure members can have any type except an incomplete type, such as the void type or a function type.
Structures can contain pointers to objects of their own type, but they cannot contain an object of their own type as
a member; such an object would have an incomplete type. For example:

/*  This is invalid. */
struct employee {
  char name[30]; 
  struct employee div1;       /*  This is invalid. */

  int *f();                   /*  This is also invalid. */

};

The following example, however, is valid:

struct employee {
  char name[30];
  struct employee *div1;/*  Member can contain pointer to employee
                            structure.                             */
  int (*f)();           /*  Pointer to a function returning int    */
};

The name of a declared structure member must be unique within the structure, but it can be used in another nested
or unnested structure or name spaces to refer to a different object. For example:

struct {
  int a;
  struct {
    int a;  /* This 'a' refers to a different object 
               than the previous 'a'               */

  } nested;

};

As an extension, the relaxed modes of VSI C allow a strucure or union to declare nested structure or union members
without specifying names for the members - called anonymous members. The effect is as if the names of the
members of the anonymous nested structure or union were declared directly within the containing structure or
union, rather than being nested. Therefore, in the preceding example, if the identifier nested were omitted from
the inner struct declaration, there would be an error because the member a in the inner structure would conflict
with the member a in the containing structure. This is similar to the anonymous union feature of the C++ language
(except that it is permitted for both structures and unions), and to the variant_struct and variant_union
features unique to VAX C.

Chapter 4, Declarations contains more examples on structures and their declarations.

The compiler assigns storage for structure members in the order of member declaration, with increasing memory
addresses for subsequent members. The first member always begins at the starting address of the structure  itself.
Subsequent members are aligned per the alignment unit, which may differ depending on the member sizes in the
structure.  A structure may contain padding (unused bits) so that members of an array of such structures are properly
aligned, and the size of the structure is the amount of storage necessary for all members plus any padded space
needed to meet alignment requirements. See your system's VSI C documentation for platform-specific information
about structure alignment and representation.

A pragma is available to change the alignment of a structure on one platform to match that of structures on other
platforms. See Section B.29, “Structure Alignment” for more information on this pragma.
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3.4.5. Union Type
A union type can store objects of different types at the same location in memory. The different union members can
occupy the same location at different times in the program.  The declaration of a union includes all members of
the union, and lists the possible object types the union can hold. The union can hold any one member at a time –
subsequent assignments of other members to the union overwrite the existing object in the same storage area.

Unions can be named with any valid identifier. An empty union cannot be declared, nor can a union contain an
instance of itself. A member of a union cannot have a void, function, or incomplete type. Unions can contain
pointers to unions of their type.

Another way to look at a union is as a single object that can represent objects of different types at different times.
Unions let you use objects whose type and size can change as the program progresses, without using machine-
dependent constructions. Some other languages call this concept a variant record. 

The syntax for defining unions is very similar to that for structures. Each union type definition creates a unique
type. Names of union members must be unique within the union, but they can be duplicated in other nested or
unnested unions or name spaces. For example:

union {
  int a;

  union foo {

    int a;  /* This 'a' refers to a different object 
               than the previous 'a'                */

  } nested;

};

Note that as an extension, relaxed modes of VSI C permit anonymous union members as in the C++ language.

The size of a union is the amount of storage necessary for its largest member, plus any padding needed to meet
alignment requirements.

Once a union is defined, a value can be assigned to any of the objects declared in the union declaration. For example:

union name {
  double dvalue;
  struct x { int value1; int value2; };
  float fvalue;
} alberta;
alberta.dvalue = 3.141596; /* Assigns the value of pi to the union object
 */

Here, alberta can hold a double, struct, or float value. The programmer has responsibility for tracking
the current type of object contained in the union. An assignment expression can be used to change the type of
value held in the union.

Undefined behavior results when a union is used to store a value of one type, and then the value is accessed through
another type. For example:

/*
    Assume that `node' is a typedef_name for objects for which 
    information has been entered into a hash table;

    `hash_entry' is a structure describing an entry in the hash table.
    The member `hash_value' is a pointer to the relevant `node'.
 */
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typedef struct hash_entry
{
   struct hash_entry *next_hash_entry;
   node   *hash_value;
   /* ... other information may be present ... */
} hash_entry;

extern hash_entry *hash_table [512];

/*
    `hash_pointer' is a union whose members are a pointer to a 
    `node' and a structure containing three bit fields that 
    overlay the pointer value.  Only the second bit field is 
    being used, to extract a value from the middle
    of the pointer to be used as an index into the hash table.  
    Note that nine bits gives a range of values from 0 to 511;  
    hence, the size of `hash_table' above.
 */
typedef union
{
   node *node_pointer;
   struct
   {
    unsigned : 4;
    unsigned  index : 9;
    unsigned :19;
   } bits;
} hash_pointer;

3.5. void Type
The void type is an incomplete type that cannot be completed. 

The void type has three important uses: 

• To signify that a function returns no value

• To indicate a generic pointer (one that can point to any type object)

• To specify a function prototype with no arguments

The following example shows how void is used to define a function, with no parameters, that does not return
a value: 

void message(void)
{
  printf ("Stop making sense!");
}

The next example shows a function prototype for a function that accepts a pointer to any object as its first and
second argument:

void memcopy (void *dest, void *source, int length);

A pointer to the void type has the same representation and alignment requirements as a pointer to a character
type. The void * type is a derived type based on void.

The void type can also be used in a cast expression to explicitly discard or ignore a value. For example:

int tree(void);
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void main()
{
  int i;

  for (; ; (void)tree()){...}  /* void cast is valid                  */

  for (; (void)tree(); ;){...} /* void cast is NOT valid, because the */
                               /* value of the second expression in a */ 
                               /* for statement is used               */

  for ((void)tree(); ;) {...}  /* void cast is valid                  */

}

A void expression has no value, and cannot be used in any context where a value is required.

3.6. Enumerated Types
An enumerated type is used to specify the possible values of an object from a predefined list.  Elements of the list
are called enumeration constants.  The main use of enumerated types is to explicitly show the symbolic names,
and therefore the intended purpose, of objects whose values can be represented with integer values.

Objects of enumerated type are interpreted as objects of type signed int, and are compatible with objects of
other integral types.

Note
In RELAXED mode, the compiler allows enumeration constants to have type other than signed int.

The compiler automatically assigns integer values to each of the enumeration constants, beginning with 0. The
following example declares an enumerated object background_color with a list of enumeration constants:

enum colors { black, red, blue, green, white } background_color;

 Later in the program, a value can be assigned to the object background_color:

background_color = white;

In this example, the compiler automatically assigns the integer values as follows: black = 0, red = 1, blue = 2,
green = 3, and white = 4. Alternatively, explicit values can be assigned during the enumerated type definition:

enum colors { black = 5, red = 10, blue, green = 7, white = green+2 };

Here, black equals the integer value 5, red = 10, blue = 11, green = 7, and white = 9. Note that blue
equals the value of the previous constant (red) plus one, and green is allowed to be out of sequential order.

Because the ANSI C standard is not strict about assignment to enumerated types, any assigned value not in the
predefined list is accepted without complaint.

3.7. Type Qualifiers
There are four type qualifiers:

• const

• volatile

• __unaligned (axp)
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• __restrict (pointer type only)

Type qualifiers were introduced by the ANSI C standard to, in part, give you greater control over the compiler's
optimizations. The const and volatile type qualifiers can be applied to any type. The __restrict type
qualifier can be applied only to pointer types.

Note that because the __restrict type qualifier is not part of the 1989 ANSI C standard, this keyword has
double leading underscores. The next version (9X) of the C standard is expected to adopt the keyword restrict
with the same semantics described in this section. 

The use of const gives you a method of controlling write access to an object, and eliminates potential side effects
across function calls involving that object. This is because a side effect is an alteration of an object's storage and
const prohibits such alteration.

Use volatile to qualify an object that can be changed by  other processes or hardware. The use of volatile
disables optimizations with respect to referencing the object. If an object is volatile qualified, it may be changed
between the time it is initialized and any subsequent assignments. Therefore, it cannot be optimized.

Function parameters, however, do not all share the type qualification of one parameter. For example:

int f( const int a, int b)   /*  a is const qualified; b is not  */

When using a type qualifier with an array identifier, the elements of the array are qualified, not the array type itself.

The following declarations and expressions show the behavior when type qualifiers modify an array or structure
type:

const struct s { int mem; } cs = { 1 };
struct s ncs;                        /* ncs is modifiable         */
typedef int A[2][3];
const A a = {{4, 5, 6}, {7, 8, 9}};  /*  array of array of const  */ 
                                     /*  int's                    */
int *pi;
const int *pci;

ncs = cs;            /*  Valid                                    */
cs = ncs;            /*  Invalid, cs is const-qualified           */
pi = &ncs.mem;       /*  Valid                                    */
pi = &cs.mem;        /*  Violates type constraints for = operator */
pci = &cs.mem;       /*  Valid                                    */
pi = a[0];           /*  Invalid; a[0] has type "const int *"     */

3.7.1. const Type Qualifier
Use the const type qualifier to qualify an object whose value cannot be changed. Objects qualified by the const
keyword cannot be modified.  This means that an object declared as const cannot serve as the operand in an
operation that changes its value; for example, the ++ and −− operators are not allowed on objects qualified with
const. Using the const qualifier on an object protects it from the side effects caused by operations that alter
storage.

The declaration of const-qualified objects can be slightly more complicated than that for nonqualified types.
Here are some examples, with explanatory comments: 

const int x = 44;   /*  const qualification of int type.
                        The value of x cannot be modified. */  
const int *z;       /*  Pointer to a constant integer.
                        The value in the location pointed 
                        to by z cannot be modified.        */
int * const ptr;    /*  A constant pointer, a pointer  
                        that will always point to the 
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                        same location                      */
const int *const p; /*  A constant pointer to a constant
                        integer: neither the pointer or 
                        the integer can be modified.       */
const const int y;  /*  Illegal - redundant use of const   */

The following rules apply to the const type qualifier: 

• The const qualifier can be used to qualify any data type, including a single member of a structure or union.

• If const is specified when declaring an aggregate type, all members of the aggregate type are treated as objects
qualified with const. When const is used to qualify a member of an aggregate type, only that member is
qualified. For example:

const struct employee {
    char *name;
    int   birthdate; /* name, birthdate, job_code, and salary are */
    int   job_code;  /* treated as though declared with const.    */
    float salary;
    } a, b;          /* All members of a and b are const-qualified*/
struct employee2 {
    char *name;
    const int birthdate;  /*  Only this member is qualified    */
    int job_code;
    float salary;
    } c, d;

All members in the previous structure are qualified with const. If the tag employee is used to specify
another structure later in the program, the const qualifier does not apply to the new structure's members unless
explicitly specified.

• The const qualifier can be specified with the volatile qualifier. This is useful, for example, in a declaration
of a data object that is immutable by the source process but can be changed by other processes, or as a model
of a memory-mapped input port such as a real-time clock.

• The address of a non-const object can be assigned to a pointer to a const object (with an explicit const
specifier), but that pointer cannot be used to alter the value of the object. For example:

const int i = 0;
int j = 1;
const int *p = &i; /* Explicit const specifier required      */
int *q = &j;
*p = 1;            /* Error – attempt to modify a const-
                      qualified object through a pointer      */
*q = 1;            /* OK                                     */

• Attempting to modify a const object using a pointer to a non-const qualified type causes unpredictable
behavior.

3.7.2. volatile Type Qualifier
Any object whose type includes the volatile type qualifier indicates that the object should not be subject to
compiler optimizations altering references to, or modifications of, the object.

Note
volatile objects are especially prone to side effects. (See Section 2.5, “Side Effects and Sequence Points”.)
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Optimizations that are defeated by using the volatile specifier can be categorized as follows:

• Optimizations that alter an object's duration; for example, cases where references to the object are shifted or
moved to another part of the program.

• Optimizations that alter an object's locality; for example, cases where a variable serving as a loop counter is
stored in a register to save the cost of doing a memory reference.

• Optimizations that alter an object's existence; for example, loop induction to actually eliminate a variable
reference.

An object without the volatile specifier does not compel the compiler to perform these optimizations; it
indicates that the compiler has the freedom to apply the optimizations depending on program context and compiler
optimization level. 

The volatile qualifier forces the compiler to allocate memory for the volatile object, and to always access
the object from memory. This qualifier is often used to declare that an object can be accessed in some way not under
the compiler's control. Therefore, an object qualified by the volatile keyword can be modified or accessed in
ways by other processes or hardware, and is especially vulnerable to side effects.

The following rules apply to the use of the volatile qualifier: 

• The volatile qualifier can be used to qualify any data type, including a single member of a structure or union.

• Redundant use of the volatile keyword elicits a warning message. For example:

volatile volatile int x;

• When volatile is used with an aggregate type declaration, all members of the aggregate type are qualified
with volatile. When volatile is used to qualify a member of an aggregate type, only that member is
qualified. For example:

volatile struct employee {
    char *name;
    int   birthdate; /* name, birthdate, job_code, and salary are */
    int   job_code;  /* treated as though declared with volatile. */
    float salary;
    } a,b;          /*  All members of a and b are volatile-qualified  */
struct employee2 {
    char *name;
    volatile int birthdate;  /*  Only this member is qualified    */
    int job_code;
    float salary;
    } c, d;

If the tag employee is used to specify another structure later in the program, the volatile qualifier does
not apply to the new structure's members unless explicitly specified.

• The const qualifier can be used with the volatile qualifier. This is useful, for example, in a declaration of
a data object that is immutable by the source process but can be changed by other processes, or as a model of
a memory-mapped input port such as a real-time clock.

• The address of a non-volatile object can be assigned to a pointer that points to a volatile object. For
example:

const int *intptr;
volatile int x;
intptr = &x;

Likewise, the address of a volatile object can be assigned to a pointer that points to a non-volatile object.
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3.7.3. __unaligned Type Qualifier
Use this data-type qualifier in pointer definitions to indicate to the compiler that the data pointed to is not properly
aligned on a correct address. (To be properly aligned, the address of an object must be a multiple of the size of the
type. For example, two-byte objects must be aligned on even addresses.)

When data is accessed through a pointer declared __unaligned, the compiler generates the additional code
necessary to copy or store the data without causing alignment errors. It is best to avoid use of misaligned data
altogether, but in some cases the usage may be justified by the need to access packed structures, or by other
considerations.

Here is an example of a typical use of __unaligned:

typedef enum {int_kind, float_kind, double_kind} kind;
void foo(void *ptr, kind k) {
    switch (k) {
    case int_kind:
        printf("%d", *(__unaligned int *)ptr);
        break;
    case float_kind:
        printf("%f", *(__unaligned float *)ptr);
        break;
    case double_kind:
        printf("%f", *(__unaligned double *)ptr);
        break;
    }
}

3.7.4. __restrict Type Qualifier
Use the __restrict type qualifier on the declaration of a pointer type to indicate that the pointer is subject to
compiler optimizations. Restricted pointers are expected to be an addition to the 9X revision of the ISO C Standard.
Using restricted pointers judiciously can often improve the quality of code output by the compiler.

3.7.4.1. Rationale
The following sections describe the rationale for restricted-pointer support.

3.7.4.1.1. Aliasing

For many compiler optimizations, ranging from simply holding a value in a register to the parallel execution of
a loop, it is necessary to determine whether two distinct lvalues designate distinct objects. If the objects are not
distinct, the lvalues are said to be aliases. If the compiler cannot determine whether or not two lvalues are aliases,
it must assume that they are aliases and suppresses various optimizations.

Aliasing through pointers presents the greatest difficulty, because there is often not enough information available
within a single function, or even within a single compilation unit, to determine whether two pointers can point to
the same object. Even when enough information is available, this analysis can require substantial time and space.
For example, it could require an analysis of a whole program to determine the possible values of a pointer that
is a function parameter.

3.7.4.1.2. Library Examples

Consider how potential aliasing enters into implementations in C of two Standard C library functions memmove
and memcpy:

• There are no restrictions on the use of memmove, and the sample implementation that follows adheres to the
model described in the revised ISO C Standard by copying through a temporary array.
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• Because memcpy cannot be used for copying between overlapping arrays, its implementation can be a direct
copy.

The following example contrasts sample implementations of the memcpy and memmove functions:

/* Sample implementation of memmove */

   void *memmove(void *s1, const void *s2, size_t n) {
           char * t1 = s1;
           const char * t2 = s2;
           char * t3 = malloc(n);
           size_t i;
           for(i=0; i&lt;n; i++) t3[i] = t2[i];
           for(i=0; i&lt;n; i++) t1[i] = t3[i];
           free(t3);
           return s1;
   }

/* Sample implementation of memcpy */

   void *memcpy(void *s1, const void *s2, size_t n);
           char * t1 = s1;
           const char * t2 = s2;
           while(n -> 0) *t1++ = *t2++;
           return s1;
   }

The restriction on memcpy is expressed only in its description in the Standard, and cannot be expressed directly
in its implementation in C. While this allows the source-level optimization of eliminating the temporary used in
memmove, it does not provide for compiler optimization of the resulting single loop.

In many architectures, it is faster to copy bytes in blocks, rather than one at a time:

• The implementation of memmove uses malloc to obtain the temporary array, and this guarantees that the
temporary is disjoint from the source and target arrays. From this, a compiler can deduce that block copies
can safely be used for both loops (if the compiler recognizes malloc as a special function that allocates new
memory).

• The implementation of memcpy, on the other hand, provides no basis for the compiler to rule out the possibility
that, for example, s1 and s2 point to successive bytes. Therefore, unconditional use of block copies does not
appear to be safe, and the code generated for the single loop in memcpy might not be as fast as the code for
each loop in memmove.

3.7.4.1.3. Overlapping Objects

The restriction in the description of memcpy in the Standard prohibits copying between overlapping objects. An
object is a region of data storage, and except for bit-fields, objects are composed of contiguous sequences of one
or more bytes, the number, order, and encoding of which are either explicitly specified or implementation-defined.

Consider the following example:

/* memcpy between rows of a matrix */

void f1(void) {
        extern char a[2][N];
        memcpy(a[1], a[0], N);
}

In this example:
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• The objects are exactly the regions of data storage pointed to by the pointers and dynamically determined to be
of N bytes in length (that is, treated as an array of N elements of character type).

• The objects are not the largest objects into which the arguments can be construed as pointing.

• The call to memcpy has defined behavior.

• The behavior is defined because the pointers point into different (non-overlapping) objects.

Now consider the following example:

/* memcpy between halves of an array */

void f2(void) {
        extern char b[2*N];
        memcpy(b+N, b, N);
}

In this example:

• Objects are defined as regions of data storage unrelated to declarations or types.

• For memcpy, a contiguous sequence of elements within an array can be regarded as an object in its own right.

• The objects are not the smallest contiguous sequence of bytes that can be construed; they are exactly the regions
of data storage starting at the pointers and of N bytes in length.

• The non-overlapping halves of array b can be regarded as objects in their own rights.

• Behavior is defined.

The length of an object is determined by various methods:

• For strings in which all elements are accessed, length is inferred by null-byte termination.

• For mbstowcs, wcstombs, strftime, vsprintf, sscanf, sprintf, and all other similar functions,
objects and lengths are dynamically determined.

3.7.4.1.4. Restricted Pointer Prototype for memcpy

If an aliasing restriction like the one for memcpy could be expressed in a function definition, then it would be
available to a compiler to facilitate effective pointer alias analysis. The __restrict type qualifier accomplishes
this by specifying in the declaration of a pointer that the pointer provides exclusive initial access to the object to
which it points, as though the pointer were initialized with a call to malloc.

The following prototype for memcpy both expresses the desired restriction and is compatible with the current
prototype:

void *memcpy(void * __restrict s1, const void * __restrict s2, size_t n);

3.7.4.2. Formal Definition of the __restrict Type Qualifier
The following definition of restricted pointers supports expression of aliasing restrictions in as many paradigms
as possible. This is helpful in converting existing programs to use restricted pointers, and allows more freedom
of style in new programs.

This definition, therefore, allows restricted pointers to be:

• Modifiable

• Members of structures and elements of arrays
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• Strongly scoped, in the sense that a restricted pointer declared in a nested block makes a non-aliasing assertion
only within that block

Definition

A pointer is designated as a restricted pointer by specifying the __restrict type qualifier on its declaration.

The formal definition of a restricted pointer as proposed for inclusion in the revised ISO C Standard follows:

Let D be a declaration of an ordinary identifier that provides a means of designating an object P as a restrict-
qualified pointer.

If D appears inside a block and does not have storage-class extern, let B denote the block. If D appears in the list
of parameter declarations of a function definition, let B denote the associated block. Otherwise, let B denote the
block of main (or the block of whatever function is called at program startup, in a freestanding environment).

In what follows, a pointer expression E is said to be based on object P if (at some sequence point in the execution
of B prior to the evaluation of E) modifying P to point to a copy of the array object into which it formerly pointed
would change the value of E. (In other words, E depends on the value of P itself rather than on the value of an object
referenced indirectly through P. For example, if identifier p has type (int ** restrict), then the pointer
expressions p and p+1 are based on the restricted pointer object designated by p, but the pointer expressions *p
and p[1] are not.)

During each execution of B, let O be the array object that is determined dynamically by all references through
pointer expressions based on P. All references to values of O shall be through pointer expressions based on P.
Furthermore, if P is assigned the value of a pointer expression E that is based on another restricted pointer object
P2, associated with block B2, then either the execution of B2 shall begin before the execution of B, or the execution
of B2 shall end prior to the assignment. If this requirement is not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of the program during which storage is guaranteed to
be reserved for an instance of an object that is associated with B and has automatic storage duration. A reference
to a value means either an access to or a modification of the value. During an execution of B, attention is confined
to those references that are actually evaluated (this excludes references that appear in unevaluated expressions,
and also excludes references that are "available," in the sense of employing visible identifiers, but do not actually
appear in the text of B).

A translator is free to ignore any or all aliasing implications of uses of restrict.

3.7.4.3. Examples
The formal definition of the __restrict type qualifier can be difficult to grasp, but simplified explanations
tend to be less accurate and complete. The essence of the definition is that the __restrict type qualifier is an
assertion by the programmer that whenever a memory access is made through a restricted pointer, the only aliases
the compiler need consider are other accesses made through the same pointer.

Much of the complexity is in defining exactly what is meant for an access to be made through a pointer (the based-
on rules), and specifying how a restricted pointer can be assigned the value of another restricted pointer, while
limiting the aliasing potential to occur only at block boundaries. Examples can be the best way to understand
restricted pointers.

The following examples show the use of restricted pointers in various contexts.

3.7.4.3.1. File Scope Restricted Pointers

A file scope restricted pointer is subject to very strong restrictions. It should point into a single array object for the
duration of the program. That array object must not be referenced both through the restricted pointer and through
either its declared name (if it has one) or another restricted pointer.

Because of these restrictions, references through the pointer can be optimized as effectively as references to a
static array through its declared name. File scope restricted pointers are therefore useful in providing access to
dynamically allocated global arrays.
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In the following example, a compiler can deduce from the __restrict type qualifiers that there is no potential
aliasing among the names a, b, and c:

/* File Scope Restricted Pointer */

float * __restrict a, * __restrict b;
float c[100];

int init(int n) {
    float * t = malloc(2*n*sizeof(float));
    a = t;       /* a refers to 1st half. */
    b = t + n;   /* b refers to 2nd half. */
   }

Notice how the single block of allocated storage is subdivided into two unique arrays in the function init.

3.7.4.3.2. Function Parameters

Restricted pointers are also very useful as pointer parameters of a function. Consider the following example:

/* Restricted pointer function parameters */

float x[100];
float *c;

void f3(int n, float * __restrict a, float * const b) {
    int i;
    for ( i=0; i&lt;n; i++ )
        a[i] = b[i] + c[i];
}
void g3(void) {
    float d[100], e[100];
    c = x; f3(100,   d,    e); /* Behavior defined.   */
           f3( 50,   d, d+50); /* Behavior defined.   */
           f3( 99, d+1,    d); /* Behavior undefined. */
    c = d; f3( 99, d+1,    e); /* Behavior undefined. */
           f3( 99,   e,  d+1); /* Behavior defined.   */
}

In the function f3, it is possible for a compiler to infer that there is no aliasing of modified objects, and so to
optimize the loop aggressively. Upon entry to f3, the restricted pointer a must provide exclusive access to its
associated array. In particular, within f3 neither b nor c may point into the array associated with a, because neither
is assigned a pointer value based on a. For b, this is evident from the const qualifier in its declaration, but for
c, an inspection of the body of f3 is required.

Two of the calls shown in g3 result in aliasing that is inconsistent with the __restrict qualifier, and their
behavior is undefined. Note that it is permitted for c to point into the array associated with b. Note also that, for
these purposes, the "array" associated with a particular pointer means only that portion of an array object that is
actually referenced through that pointer.

3.7.4.3.3. Block Scope

A block-scope restricted pointer makes an aliasing assertion that is limited to its block. This is more natural than
allowing the assertion to have function scope. It allows local assertions that apply only to key loops, for example.
It also allows equivalent assertions to be made when inlining a function by converting it into a macro.

In the following example, the original restricted-pointer parameter is represented by a block-scope restricted
pointer:

/*  Macro version of f3 */
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float x[100];
float *c;

#define f3(N, A, B)                                    \
{   int n = (N);                                       \
    float * __restrict a = (A);                          \
    float * const    b = (B);                          \
    int i;                                             \
    for ( i=0; i&lt;n; i++ )                              \
        a[i] = b[i] + c[i];                            \
}

3.7.4.3.4. Members of Structures

A restricted-pointer member of a structure makes an aliasing assertion. The scope of that assertion is the scope of
the ordinary identifier used to access the structure.

Therefore, although the structure type is declared at file scope in the following example, the assertions made by
the declarations of the parameters of f4 have block (of the function) scope.

/* Restricted pointers as members of a structure */

struct t {     /* Restricted pointers assert that    */
    int n;     /* members point to disjoint storage. */
    float * __restrict p;
    float * __restrict q;
};

void f4(struct t r, struct t s) {
    /* r.p, r.q, s.p, s.q should all point to    */
    /* disjoint storage during each execution of f4. */
    /* ... */
}

3.7.4.3.5. Type Definitions

A __restrict qualifier in a typedef makes an aliasing assertion when the typedef name is used in the
declaration of an ordinary identifier that provides access to an object. As with members of structures, the scope of
the latter identifier, not the scope of the typedef name, determines the scope of the aliasing assertion.

3.7.4.3.6. Expressions Based on Restricted Pointers

Consider the following example:

/* Pointer expressions based on p */

#include <stdlib.h>
#include <string.h>

struct t { int * q; int i; } a[2] = { /* ... */ };

void f5(struct t * __restrict p, int c)
{
     struct t * q;
     int n;
     if(c) {
         struct t * r;
         r = malloc(2*sizeof(*p));
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         memcpy(r, p, 2*sizeof(*p));
         p = r;
     }
     q = p;
     n = (int)p;

     /* - - - - - - - - - - - - - - - - - - - - - - -

       Pointer expressions     Pointer expressions
       based on p:             not based on p:
       -------------------     -------------------
       p                       p->q
       p+1                     p[1].q
       &p[1]                   &p
       &p[1].i
       q                       q->p
       ++q
       (char *)p               (char *)(p->i)
       (struct t *)n           ((struct t *)n)->q
     - - - - - - - - - - - - - - - - - - - - - - - - */
}

main() {
    f5(a, 0);
    f5(a, 1);
}

In this example, the restricted pointer parameter p is potentially adjusted to point into a copy of its original array
of two structures. By definition, a subsequent pointer expression is said to be based on p if and only if its value
is changed by this adjustment.

In the comment:

• The values of the pointer expressions in the first column are changed by this adjustment, and so those expressions
are based on p.

• The values of the pointer expressions in the second column are not changed by the adjustment, and so those
expressions are not based on p.

This can be verified by adding appropriate print statements for the expressions and comparing the values produced
by the two calls of f5 in main.

Notice that the definition of "based on" applies to expressions that rely on implementation-defined behavior. This
is illustrated in the example, which assumes that the casts (int) followed by (struct t *) give the original
value.

3.7.4.3.7. Assignments Between Restricted Pointers

Consider one restricted pointer "newer" than another if the block with which the first is associated begins execution
after the block associated with the second. Then the formal definition allows a newer restricted pointer to be
assigned a value based on an older restricted pointer. This allows, for example, a function with a restricted-pointer
parameter to be called with an argument that is a restricted pointer.

Conversely, an older restricted pointer can be assigned a value based on a newer restricted pointer only after
execution of the block associated with the newer restricted pointer has ended. This allows, for example, a function
to return the value of a restricted pointer that is local to the function, and the return value then to be assigned to
another restricted pointer.

The behavior of a program is undefined if it contains an assignment between two restricted pointers that does not
fall into one of these two categories. Some examples follow:
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/* Assignments between restricted pointers */
int * ____restrict p1, * ____restrict p2;
void f6(int * ____restrict q1, * ____restrict q2)
{
        q1 = p1; /* Valid behavior */
        p1 = p2; /* Behavior undefined */
        p1 = q1; /* Behavior undefined */
        q1 = q2; /* Behavior undefined */
    {
        int * ____restrict r1, * ____restrict r2;
        ...
        r1 = p1; /* Valid behavior */
        r1 = q1; /* Valid behavior */
        r1 = r2; /* Behavior undefined */
        q1 = r1; /* Behavior undefined */
        p1 = r1; /* Behavior undefined */
        ...
    }
}

3.7.4.3.8. Assignments to Unrestricted Pointers

The value of a restricted pointer can be assigned to an unrestricted pointer, as in the following example:

/* Assignments to unrestricted pointers */
void f7(int n, float * ____restrict r, float * ____restrict s) {
    float * p = r, * q = s;
    while(n->0)
        *p++ = *q++;
}

The VSI C compiler tracks pointer values and optimizes the loop as effectively as if the restricted pointers r and
s were used directly, because in this case it is easy to determine that p is based on r, and q is based on s.

More complicated ways of combining restricted and unrestricted pointers are unlikely to be effective because they
are too difficult for a compiler to analyze. As a programmer concerned about performance, you must adapt your
style to the capabilities of the compiler. A conservative approach would be to avoid using both restricted and
unrestricted pointers in the same function.

3.7.4.3.9. Ineffective Uses of Type Qualifiers

Except where specifically noted in the formal definition, the __restrict qualifier behaves in the same way
as const and volatile.

In particular, it is not a constraint violation for a function return type or the type-name in a cast to be qualified, but
the qualifier has no effect because function call expressions and cast expressions are not lvalues.

Thus, the presence of the __restrict qualifier in the declaration of f8 in the following example makes no
assertion about aliasing in functions that call f8:

/* Qualified function return type and casts */

float * __restrict f8(void)  /* No assertion about aliasing. */
{
    extern int i, *p, *q, *r;

    r = (int * __restrict)q; /* No assertion about aliasing. */

    for(i=0; i<100; i++)
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        *(int * __restrict)p++ =   r[i];  /* No assertion    */
                                        /* about aliasing. */
    return p;
}

Similarly, the two casts make no assertion about aliasing of the references through the pointers p and r.

3.7.4.3.10. Constraint Violations

It is a constraint violation to restrict-qualify an object type that is not a pointer type, or to restrict-qualify a pointer
to a function:

/*__restrict cannot qualify non-pointer object types: */

int __restrict x;    /* Constraint violation */
int __restrict *p;   /* Constraint violation */

/* __restrict cannot qualify pointers to functions: */

float (* __restrict f9)(void); /* Constraint violation */

3.8. Type Definition
The keyword typedef is used to define a type synonym.   In such a definition, the identifiers name types instead
of objects. One such use is to define an abbreviated name for a lengthy or confusing type definition.

A type definition does not create a new basic data type; it creates an alias for a basic or derived type. For example,
the following code helps explain the data types of objects used later in the program:

typedef float *floatp, (*float_func_p)();

The type floatp is now “pointer to a float value” type, and the type float_func_p is “pointer to a function
returning float”.

A type definition can be used anywhere the full type name is normally used (you can, of course, use the normal
type name). Type definitions share the same name space as variables, and defined types are fully compatible with
their equivalent types. Types defined as qualified types inherit their type qualifications.

Type definitions can also be built from other type definitions. For example:

typedef char byte;
typedef byte ten_bytes[10];

Type definition can apply to variables or functions. It is illegal to mix type definitions with other type specifiers.
For example:

typedef int *int_p;
typedef unsigned int *uint_p;
unsigned int_p x;           /*  Invalid   */
uint_p y;                   /*  Valid     */

Type definitions can also be used to declare function types. However, the type definition cannot be used in the
function's definition. The function's return type can be specified using a type definition. For example:

typedef unsigned *uint_p;   /* uint_p has type "pointer to unsigned int"   
 */
uint_p xp;
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typedef uint_p func(void);  /* func has type "function returning pointer to
 */
                            /* unsigned int                                
 */
func f;
func b;
  func f(void)              /* Invalid – this declaration specifies a     
 */
                            /* function returning a function type, which   
 */
  {                         /* is not allowed                              
 */ 
    return xp;
  }

uint_p b(void)              /* Legal – this function returns a value of 
  {                         /* type uint_p.                                
 */
   return xp;
  }

The following example shows that a function definition cannot be inherited from a typedef name:

typedef int func(int x);
func f;        
func f         /*  Valid definition of f with type func                 
 */ 
{
  return 3;
}              /* Invalid, because the function's type is not inherited  */

Changing the previous example to a valid form results in the following:

typedef int func(int x);
func f;      
int f(int x)   /*  Valid definition of f with type func           */ 
{
  return 3;
}              /* Legal, because the function's type is specified */

You can include prototype information, including parameter names, in the typedef name. You can also redefine
typedef names in inner scopes, following the scope rules explained in Section 2.3, “Scope”. 
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Chapter 4. Declarations
Declarations are used to introduce the identifiers used in a program and to specify their important attributes, such
as type, storage class, and identifier name. A declaration that also causes storage to be reserved for an object or
that includes the body of a function, is called a definition.

Section 4.1, “Declaration Syntax Rules” covers general declaration syntax rules, Section 4.2, “Initialization”
discusses initialization, and Section 4.3, “External Declarations” describes external declarations.

The following kinds of identifiers can be declared. See the associated section for information on specific
declaration and initialization syntax. Functions are discussed in Chapter 5, Functions.

• Simple objects (Section 4.4, “Declaring Simple Objects”)

• Enumeration constants (Section 4.5, “Declaring Enumerations”)

• Pointers (Section 4.6, “Declaring Pointers”)

• Arrays (Section 4.7, “Declaring Arrays”)

• Structure and union members (Section 4.8, “Declaring Structures and Unions”)

• Tags (Section 4.10, “Declaring Tags”)

Note

Preprocessor macros created with the #define directive are not declarations. Chapter 8, Preprocessor Directives
and Predefined Macros has information on creating macros with preprocessor directives.

4.1. Declaration Syntax Rules
The general syntax of a declaration is as follows:

declaration:

declaration-specifiers init-declarator-listopt;

declaration-specifiers:

storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt

init-declarator-list:

init-declarator
init_declarator-list , init-declarator 

init-declarator:

declarator
declarator = initializer 

Note the following items about the general syntax of a declaration: 

• The storage-class-specifier, type-qualifier, and type-specifier can be listed in any order. All are optional, but,
except for function declarations, at least one such specifier or qualifier must be present. Placing the storage-
class-specifier anywhere but at the beginning of the declaration is an obsolete style.
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• Storage-class keywords are auto, static, extern, and register.

• Type qualifiers are const and volatile.

• The declarator is the name of the object or function being declared. A declarator can be as simple as a single
identifier, or can be a complex construction declaring an array, structure, pointer, union, or function (such as
*x, tree(), and treebar[10]).

A full declarator is a declarator that is not part of another declarator. The end of a full declarator is a sequence
point. If the nested sequence of declarators in a full declarator contains a variable-length array type, the type
specified by the full declarator is said  to be variably modified.

• Initializers are optional and provide the initial value of an object. Initializers can be a single value or a brace-
enclosed list of values, depending on the type of object being declared.

• A declaration determines the beginning of an identifier's scope.

• An identifier's linkage is determined by the declaration's placement and its specified storage class.

Consider the following example:

volatile static int data = 10;

 This declaration shows a qualified type (a data type with a type qualifier—in this case, int qualified by
volatile), a storage class (static), a declarator (data), and an initializer (10). This declaration is also a
definition, because storage is reserved for the data object data.

The previous example is simple to interpret, but complex declarations are more difficult. See your platform-specific
VSI C documentation for more information about interpreting C declarations.

The following semantic rules apply to declarations: 

• Empty declarations are illegal; declarations must contain at least one declarator, or specify a structure tag, union
tag, or the members of an enumeration.

• Each declarator declares one identifier. There is no limit to the number of declarators in a declaration.

• At most, one storage-class specifier can be used in each object declaration. If none is provided, the auto storage
class is assigned to objects declared inside a function definition, and the extern class is assigned to objects
declared outside of a function definition.

• The only allowable (and optional) storage class for declaration of a function with block scope is extern.

• If no type-specifier is present, the default is signed int.

• A declarator is usable only over a certain range of the program, determined by the declarator's scope. The
duration of its storage allocation is dependent on its storage class. See Section 2.3, “Scope” for more information
on scope and Section 2.10, “Storage Classes” for more information on storage classes.

• The usefulness of an identifier can be limited by its visibility, which can be hidden in some parts of the program.
See Section 2.4, “Visibility” for more information on visibility.

• All declarations in the same scope that refer to the same object or function must have compatible types.

• If an object has no linkage, there can be no more than one declaration of the object with the same scope and in
the same name space. Objects without linkage must have their type completed by the end of the declaration, or
by the final initializer (if it has one). Section 2.8, “Linkage” describes linkage.

Storage Allocation
Storage is allocated to a data object in the following circumstances:   
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• If the object has no linkage, storage is allocated upon declaration of the object. If a block scope object with
auto or register storage class is declared, storage is deallocated at the end of the block.

• If the object has internal linkage, storage is allocated upon the first definition of the object.

• If the object has external linkage, storage is allocated upon initialization of the object, which must occur only
once for each object. If an object has only a tentative definition (see Section 2.9, “Tentative Definitions”), the
compiler acts as though there were a file scope definition of the object with an initializer of zero. Section 2.8,
“Linkage” describes linkage in detail.

Note

 The compiler does not necessarily allocate distinct variables to memory locations according to the order of
declaration in the source code. Furthermore, the order of allocation can change as a result of seemingly unrelated
changes to the source code, command-line options, or from one version of the compiler to the next - it is essentially
unpredictable. The only way to control the placement of variables relative to each other is to make them members
of the same struct type or, on OpenVMS Alpha systems, by using the noreorder attribute on a named
#pragma extern_model strict_refdef.

4.2. Initialization
  Initialization of objects of each type is discussed in the following sections, but a few universal constraints apply
to all initializations in C:  

Initializers provide an initial value for objects, and follow this syntax:

initializer:

assignment-expr
{ initializer-list }
{ initializer-list, }

initializer-list:

designation-opt initializer
initializer-list, designation-opt initializer

designation:

designator-list =

designator-list:

designator
designator-list designator

designator:

[ constant-expr ]
. identifier

Initialization of objects of each type is discussed in the following sections, but a few universal constraints apply
to all initializations in C:

• The number of initializers cannot exceed the number of objects to be initialized. Initializers can number less
than the number of objects to be initialized, in which case the remaining objects are initialized to zero.
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• Constant expressions must be used in an initializer for an object that has static storage duration, or in an initializer
list for an object that has an aggregate or union type.

• If an identifier's declaration has block scope, and the identifier has external or internal linkage, the declaration
of the identifier cannot include an initializer.

• If an object that has static storage duration is not explicitly initialized, it is initialized implicitly as if every
member with an arithmetic type were assigned 0, and every member with a pointer type were assigned a
null pointer constant. If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate.

• The initializer for a scalar object must be a single expression, optionally enclosed in braces. The initial value of
the object is that of the expression. The same type constraints and conversions apply as for simple assignment.

• If an aggregate object contains members that are aggregates or unions, or if the first member of a union is an
aggregate or union, the initialization rules apply recursively to the aggregate members or contained unions. If
an initializer list is used for an aggregate member or contained union, the initializers in that list initialize the
members of the aggregate member or contained union. Otherwise, only enough initializers from the list are
used to account for the object; any remaining members in the list are left to initialize the next member of the
aggregate object. For example:

struct t1 {
 int i;
 double d;
};

union t2 {
 int i;
 double d;
};

struct t3 {
 struct t1 s;
 union t2 u;
};

struct t3 st[] = { /* complete initializer */
 1, 2, 0, 4, 0, 0, 7, 0, 0
};

Given the previous declarations, the variable st is an array of 3 structures. Its initial contents are:

            s      u
         ------    -
st[0]:   1, 2.0,   0
st[1]:   4, 0.0,   0
st[2]:   7, 0.0,   0

This variable can also be defined in the following ways—all four initializers are equivalent:

struct t3 st[] = { /* partial initializer */
 1, 2, 0, 4, 0, 0, 7
};

struct t3 st[] = { /* nested and complete initializers */
 {1, 2, 0},
 {4, 0, 0},
 {7, 0, 0}
};
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struct t3 st[] = { /* nested and partial initializers */
 {1, 2},
 {4},
 {7}
};

For initialization of arrays, structures, and unions, see Sections 4.7.1, 4.8.4, and 4.8.5.

• For a description of initializers with designations for arrays and structures, see Section 4.9, “Initializers with
Designations”.

• Variant structures and unions are initialized just like normal structures and unions. See Section 4.8.4, “Initializing
Structures” and Section 4.8.5, “Initializing Unions” for more information.

C has historically allowed initializers to be optionally surrounded by extra braces (to improve formatting clarity,
for instance). These initializers are parsed differently depending on the type of parser used. VSI C uses the parsing
technique specified by the ANSI standard, known as the top-down parse. Programs depending on a bottom-up
parse of partially braced initializers can yield unexpected results. The compiler generates a warning message when
it encounters unnecessary braces in common C compatibility mode or when the error-checking compiler option
is specified on the command line. 

4.3. External Declarations
An object declaration outside of a function is called an external declaration. Contrast this with an internal
declaration, which is a declaration made inside a function or block; the declaration is internal to that function or
block, and is visible only to that function or block. The compiler recognizes an internally declared identifier from
the point of the declaration to the end of the block.

If an object's declaration has file scope and an initializer, the declaration is also an external definition for the object.
A C program consists of a sequence of external definitions of objects and functions.

 Any definition reserves storage for the entity being declared. For example:

float fvalue = 15.0;                /* external definition  */
main ()
{
  int ivalue = 15;                  /* internal definition  */
}

External data declarations and external function definitions take the same form as any data or function declaration
(see Chapter 5, Functions for standard function declaration syntax), and must follow these rules:

• The storage class of an object externally declared can be left unspecified, or it can be declared as extern or
static (see Section 2.10, “Storage Classes”). If it is unspecified, the default is the extern storage class, and
linkage for the declared object is external. The type specifier may also be omitted, in which case the default
type is int. Note that the storage-class-specifier, type-qualifier, and type-specifier cannot all be omitted from
a declaration.

• If an object with external linkage is declared or used in an expression, there must be only one external definition
for the identifier somewhere in the program. If the same object is declared more than once externally, the
declarations must agree in type and linkage. (See Section 2.8, “Linkage”.)

• If one or more of the declarations incompletely specify the object's type, and there exists one declaration of the
object with completed type, all the declarations are taken to be in agreement with the completed type. 

• The scope of external declarations persist to the end of the file in which they are declared, while internal
declarations persist only to the end of the block in which they were declared. Data objects to be used within only
one block should be declared in that block. The syntax for external definitions is the same as for all definitions.
Function definitions can only occur at the external level.
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• Externally declared auto and register objects are not permitted. Internally declared auto and register
objects are not automatically initialized and, if not explicitly initialized, have the irrelevant value previously
stored at their address. All static objects are automatically initialized to 0, if not explicitly initialized.

Note

An external function can be called without previously declaring it in C, but this construction is not recommended
because of the loss of type checking and subsequent susceptibility to bugs. If such a function call is made, the
compiler will treat the function as if an external declaration of type int appeared in the block containing the
call. For example:

void function1()
{
int a,b;
x (a,b);
}

Here, the compiler will behave as if the declaration extern int x(); appeared within the function1
definition block.

  The first declaration of an identifier in a compilation unit must specify, explicitly or by the omission of the
static keyword, whether the identifier is internal or external. For each object, there can be only one definition.
Multiple declarations of the same object may be made, as long as there are no conflicting or duplicate definitions
for the same object.

An external object may be defined with either an explicit initialization or a tentative definition. A declaration of
an object with file scope, without an initializer, and with a storage-class specifier other than static is a tentative
definition. The compiler will treat a tentative definition as the object's only definition unless a complete definition
for the object is found. As with all declarations, storage is not actually allocated until the object is defined.

If a compilation unit contains more than one tentative definition for an object, and no external definition for the
object, the compiler treats the definition as if there were a file scope declaration of the object with an initializer
of zero, with composite type as of the end of the compilation unit. See Section 2.7, “Compatible and Composite
Types” for a definition of composite type.

If the declaration of an object is a tentative definition and has internal linkage, the declared type must not be an
incomplete type. See Section 2.9, “Tentative Definitions” for examples of tentative definitions.

4.4. Declaring Simple Objects
Simple objects are objects with one of the basic data types. Therefore, a simple object can have an integral
or floating-point type. Like all objects, simple objects are named storage locations whose values can change
throughout the execution of the program. All simple objects used in a program must be declared.  

A simple object declaration can be composed of the following items: 

• Optional data-type specifier keywords

• Optional type-qualifier keywords (const or volatile). For example:

const int *p;   /*  const qualifies the integer p points to   */
int *const p;   /*  const qualifies the pointer p             */

• An optional storage-class keyword. If the storage-class keyword is omitted, there is a default storage class that
depends on the location of the declaration in the program. The positions of the storage-class keywords and the
data-type keywords are interchangeable, but placing the storage-class keyword anywhere but at the beginning
of the declaration is an obsolete construction.
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• Declarators, which list the names of the declared objects.

• Initializers giving the initial value of a simple object. An initializer for a simple object consists of an equal sign
(=) followed by a single expression.

4.4.1. Initializing Simple Objects
An initializer for a simple object consists of an equal sign (=) followed by a single constant expression.   For
example:

int x = 10;
float y = ((12 - 2) + 25);

Here, the declaration both declares and defines the object x as an integer value initially equal to 10, and declares
and defines the floating-point value y with an initial value of 35. 

Without an initializer, the initial value of an auto object is undefined. A static object without explicit
initialization is automatically initialized to 0. (If the object is a static array or structure, all members are
initialized to 0.)

A block scope identifier with external or internal linkage (that is, declared using the extern or static
keywords) cannot include an initializer in the declaration, because it is initialized elsewhere.

4.4.2. Declaring Integer Objects
Integer objects can be declared with the int, long, short, signed, and unsigned keywords. char can
also be used, but only for small values. The following statements are examples of integer declarations:

int x;        /*  Declares an integer variable x    */
int y = 10;   /*  Declares an integer variable y    */
              /*  and sets y's initial value to 10  */

Some of the keywords can be used together to explicitly state the allowed value range. For example:

unsigned long int a;
signed long;           /*  Synonymous with "signed long int"   */
unsigned int;

Consider the range of values an integer object must be capable of representing when selecting the integral data
type for the object. See Chapter 3, Data Types for more information on the size and range of integral data types.

4.4.3. Declaring Character Variables
Character objects are declared with the char keyword. The following example shows a character declaration with
the initialization of a character object: 

char ch = 'a'; /* Declares an object ch with an initial value 'a' */

In C, character string literals are stored in arrays of type char. See Section 4.7, “Declaring Arrays” for more
information on arrays.   

4.4.4. Declaring Floating-Point Variables
  When declaring floating-point objects, determine the amount of precision needed for the stored object. Single-
precision or double-precision objects can be used. For single precision, use the float keyword. For double
precision, use the double or long double keywords. For example:
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float x = 7.5;
double y = 3.141596;

See your platform-specific VSI C documentation for specific information on the range and precision of floating-
point types.

4.5. Declaring Enumerations
An enumerated type is a user-defined integer type. An enumerated type defines enumeration constants, which
are integral constant expressions with values that can be represented as integers. An enumerated type declaration
follows this syntax: 

enum-specifier:

enum identifieropt { enumerator-list}  
enum identifieropt { enumerator-list , } 
enum identifier 

enumerator-list:

enumerator
enumerator-list, enumerator

enumerator:

enumeration-constant
enumeration-constant = constant_expression

In VSI C, objects of type enum are compatible with objects of type signed int.

The following example shows the declaration of an enumeration type and an enumeration tag:

enum shades
   {
      off, verydim, dim, prettybright, bright
   }  light;

This declaration defines the variable light to be of an enumerated type shades. light can assume any of
the enumerated values.

The tag shades is the enumeration tag of the new type. off through bright are the enumeration constants with
values 0 through 4. These enumeration constants are constant values and can be used wherever integer constants
are valid.

Once a tag is declared, it can be used as a reference to that enumerated type, as in the following declaration, where
the variable light1 is an object of the enumerated data type shades:

enum  shades  light1;

An incomplete type declaration of an enumerated type is illegal; for example:

enum e;

An enum tag can have the same spelling as other identifiers in the same program in other name spaces. However,
enum constant names share the same name space as variables and functions, so they must have unique names
to avoid ambiguity.

Internally, each enumeration constant is associated with an integer constant; the compiler gives the first
enumeration constant the value 0 by default, and the remaining enumeration constants are incremented by 1 for
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each succeeding value. Any enumeration constant can be set to a specific integer constant value. The enumeration
constants following such a construct (unless they are also set to specific values) then receive values that are one
greater than the previous value. Consider the following example:

enum spectrum
   {
      red, yellow = 4, green, blue, indigo, violet
   }  color2 = yellow;

This declaration gives red, yellow, green, blue, ..., the values 0, 4, 5, 6, ... Assigning duplicate values to
enumeration constants is permitted.

The value of color2 is an integer (4), not a string such as "red" or "yellow".

4.6. Declaring Pointers
Pointers are variables that contain the memory addresses of objects or functions. Pointer variables are declared as
a pointer type by using the asterisk punctuator and the data type of the object pointed to, as shown in the following
syntax:

pointer:

* type-qualifier-listopt 
* type-qualifier-listopt pointer

type-qualifier-list:

type-qualifier
type-qualifier-list type-qualifier

By default, VSI C pointers are 32 bits long on OpenVMS systems and 64 bits long on Tru64 UNIX systems.
Although their defaults are different, both OpenVMS Alpha and Tru64 UNIX systems support 32-bit (short) and
64-bit (long) pointers. VSI C provides qualifiers/switches and #pragma preprocessor directives to control pointer
size.

The type-qualifier is either const, volatile, __unaligned (Alpha) , __restrict, or any combination
thereof.

An object of pointer type is declared as in the following example:   

char *px;

In this example, identifier px is declared as a pointer to an object of type char. No type-qualifier is used in this
example. The expression *px yields the char that px points to.

  The following declarations show the difference between a variable pointer to a constant, a constant pointer to a
variable, and a constant pointer to a constant object.

const int *ptr_to_constant;     /*  pointer variable pointing 
                                    to a const object         */
int *const constant_ptr;        /*  constant pointer to a 
                                    non-const object          */
const int *const constant_ptr;  /*  Const pointer to a 
                                    const object              */

The contents of an object pointed to by ptr_to_constant cannot be modified through that pointer, but
ptr_to_constant itself can be changed to point to another const-qualified object. Similarly, the contents
of the integer pointed to by constant_ptr can be modified, but constant_ptr itself will always point to
the same location.
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The declaration of the constant pointer constant_ptr can be clarified by including a definition for the type
pointer to int. The following example declares constant_ptr as an object with type const-qualified pointer
to int. The pointer's value (an address) is constant:

typedef int *int_ptr;
const int_ptr constant_ptr;

 The __unaligned data-type qualifier can be used in pointer definitions on Alpha systems. to indicate to the
compiler that the data pointed to is not properly aligned on a correct address. (To be properly aligned, the address
of an object must be a multiple of the size of the type. For example, 2-byte objects must be aligned on even
addresses.) (Alpha)

When data is accessed through a pointer declared __unaligned, the compiler generates the additional code
necessary to copy or store the data without causing alignment errors. It is best to avoid use of misaligned data
altogether, but in some cases the usage may be justified by the need to access packed structures, or by other
considerations. (Alpha)

 The __restrict data-type qualifier is used to designate a pointer as pointing to a distinct object, thus allowing
compiler optimizations to be made (see Section 3.7.4, “__restrict Type Qualifier”).

  Unless an extern or static pointer variable is explicitly initialized, it is initialized to a null pointer. A null
pointer is a pointer value of 0. The contents of an uninitialized auto pointer are undefined.

4.6.1. Declaring void Pointers
A void pointer is a pointer without a specified data type to describe the object to which it points. In effect, it is
a generic pointer. (Before the ANSI C standard, char * was used to define generic pointers; this practice is now
discouraged by the ANSI standard because it is less portable.)

A pointer to any type can be assigned to a void pointer without a cast, and vice versa. See Section 6.4.6, “The
Cast Operator” for more information on the cast operation. The following statements show how a void pointer
can be assigned to other typed pointers, without explicit casts:

float *float_pointer;
void  *void_pointer;
.
.
.
float_pointer = void_pointer;
                                        /*    or,      */
void_pointer  = float_pointer;

A void pointer is often used in function calls, function arguments, or function prototypes when a parameter or
return value is a pointer of an unknown type. Consider the following example, where a void pointer is used as
a generic return value:

void *memcpy (void *s1, const void *s2, size_t n);
{
   void  *generic_pointer;
.
.
.
/* The function return value can be a pointer to many types. */

generic_pointer = func_returning_pointer( arg1, arg2, arg3 );
.
.
.
/*  size_t is a defined type                                 */
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}

See Section 5.3, “Function Definitions” for further information about using void in function declarations.

4.6.2. Initializing Pointers
The pointer object can be initialized with a single expression. For example:

int i = 10;
int *p = &i;  /*  p is a pointer to int, initialized */
              /*  as holding the address of i        */

  Without an initializer, the values of static and extern pointers are automatically initialized to null pointers
(pointers to memory location 0).

The following declaration defines p with type pointer to char, and initializes p to point to an object of type array
of char with length 4, whose elements are initialized by a character string literal. (The null character is the fourth
member of the array.) If an attempt is made to use p to modify the contents of the array, the behavior is undefined. 

char *p =  "abc";

4.7. Declaring Arrays
Arrays are declared with the bracket punctuators [ ], as shown in the following syntax:

storage-class-specifieropt type-specifier declarator[* or constant-
expression-listopt]

The following example shows a declaration of a 10-element array of integers, a variable called table_one:

int table_one[10];

The type-specifier shows the data type of the elements. The elements of an array can be of any scalar or aggregate
data type. The identifier table_one specifies the name of the array. The constant expression 10 gives the number
of elements in a single dimension. Arrays in C are zero-based; that is, the first element of the array is identified
with a 0 subscript, such as the one shown in the following example:

int x[5];
x[0] = 25; /* The first array element is assigned the value 25 */

The expression between the brackets in the declaration must be either the (*) punctuator or an integral constant
expression with a value greater than zero.

If * is specified between the brackets, then the array type is a variable-length array type of unspecified size, which
can be used only in declarations with function prototype scope. 

If the size expression is an integer constant expression and the element type has a known constant size, the array
type is not a variable-length array type. Otherwise, it is a variable-length array type. The size of each instance of
a variable-length array type does not change during its lifetime. For more information on variable-length arrays,
see Section 4.7.3, “Variable-Length Arrays”.

Omitting the * or the constant expression creates an incomplete array declaration, which is useful in the following
cases:  

• If the array is declared external and its storage is allocated by a definition in another place, you can omit the
constant expression for convenience when the array name is declared, as in the following example:

extern int array1[];
int first_function(void)
{
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.

.

.
}

In a separate compilation unit:

int array1[10];
int second_function(void)
{
.
.
.
}

The array size specifier may only be omitted from the first pair of brackets in a multidimensional array
declaration. This is because an array's elements must have complete types, even if the array itself has an
incomplete type.

• If the declaration of the array includes initializers (see sections 4.7.1 and 4.9), you can omit the size of the array,
as in the following example:

char  array_one[] = "Shemps";
char  array_two[] = { 'S', 'h', 'e', 'm', 'p', 's', '\0' };

The two definitions initialize variables with identical elements. These arrays have seven elements: six characters
and the null character (\0), which terminates all character strings. The size of the array is determined from the
number of characters in the initializing character-string constant or initialization list. Initializing an incomplete
array completes the array type. An array is completed at the end of its initializer list.

• If you use the array as a function parameter, the array must be defined in the calling function. However, the
declaration of the parameter in the called function can omit the constant expression within the brackets. The
address of the first element of the array is passed. Subscripted references in the called function can modify
elements of the array. The following example shows how to use an array in this manner:

main()
{
                          /* Initialize array         */
   static char arg_str[] = "Thomas";
   int sum;
   sum = adder(arg_str); /* Pass address of first array element  */
      .
      .
      .
}

/*  adder adds ASCII values of letters in array       */

int adder( char param_string[])
{
    int i, sum = 0;       /* Incrementer and sum      */
                          /* Loop until NULL char     */
    for (i = 0; param_string[i] != '\0'; i++)
       sum += param_string[i];
    return sum;
}

After the function adder is called, parameter param_string receives the address of the first character of
argument arg_str, which can then be accessed in adder. The declaration of param_string serves only
to give the type of the parameter, not to reserve storage for it.
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Array members can also be pointers. The following example declares an array of floating-point numbers and an
array of pointers to floating-point numbers:

float fa[11], *afp[17];

When a function parameter is declared as an array, the compiler treats the declaration as a pointer to the first
element of the array. For example, if x is a parameter and is intended to represent an array of integers, it can be
declared as any one of the following declarations:

int x[];
int *x;
int x[10];

Note that the specified size of the array does not matter in the case of a function parameter, since the pointer always
points to only the first element of the array.

C supports arrays declared as an array of arrays. These are sometimes called multidimensional arrays.  Consider
the following example, where variable table_one is a two-dimensional array containing 20 integers:

int table_one[10][2];

 Arrays are stored in row-major order, which means the element table_one[0][0] (in the previous example)
immediately precedes table_one[0][1], which in turn immediately precedes table_one[1][0].

4.7.1. Initializing Arrays
Arrays are initialized with a brace-enclosed list of constant expressions.   A list of initializers for an incomplete
array declaration completes the array's type and completely defines the array size. Therefore, when initializing an
array of unknown size, the number of initializers in the initializer list determines the size of the array. For example,
the following declaration initializes an array of three elements:

int x[] = { 1, 2, 3 };

If the array being initialized has a storage class of static, the initializers must be constant expressions.

Initializers for an array of a given size are assigned to array members on a one-to-one basis. If there are too few
initializers for all members, the remaining members are initialized to 0. Listing too many initializers for a given
size array is an error. For example:

int x[5] = { 0, 1, 2, 3, 4, 5 };    /*  error     */ 

String literals are often assigned to a char or wchar_t array. In this case, each character of the string represents
one member of a one-dimensional array, and the array is terminated with the null character. When an array is
initialized by a pointer to a string literal, the string literal cannot be modified through the pointer.

When initializing an array with a string literal, use quotation marks around the initializing string. For example:

char string[26] = { "This is a string literal." }; 
                  /* The braces above are optional here */

The terminating null character is appended to the end of the string if the size permits, as it does in this case. Another
form for initializing an array with characters is the following:

char string[12] = {'T', 'h', 'i', 's', ' ', 'w', 'a', 'y' };

The preceding example creates a one-dimensional array containing the string value "This way". The characters in
this array can be freely modified. Remaining uninitialized array members will be automatically initialized to zero.

If the size of the array used for a string literal is not explicitly stated, its size is determined by the number of
characters in the string (including the terminating null character). If the size of the array is explicitly stated,
initializing the array with a string literal longer than the array is an error.

77



Declarations

Note

There is one special case where the null character is not automatically appended to the array. This case is when
the array size is explicitly specified and the number of initializers completely fills the array size. For example:

char c[4] = "abcd";

Here, the array c holds only the four specified characters, a, b, c, and d. No null character terminates the array.

Using the following rules, you can omit braces when initializing the members of a multidimensional arrays:

• When initializing arrays, you can omit the outermost pair of braces.

• If the initializer list includes all of the initializers for the object being initialized, you can omit the inner braces.

Consider the following example:

float x[4][2] = {
 { 1, 2 }
 { 3, 4 }
 { 5, 6 }
};

In this example, 1 and 2 initialize the first row of the array x, and the following two lines initialize the second and
third rows, respectively. The initialization ends before the fourth row is initialized, so the members of the fourth
row default to 0. Here is the result:

x[0][0] = 1;
x[0][1] = 2;
x[1][0] = 3;
x[1][1] = 4;
x[2][0] = 5;
x[2][1] = 6;
x[3][0] = 0;
x[3][1] = 0;

The following declaration achieves the same result:

float x[4][2] = { 1, 2, 3, 4, 5, 6 };

Here, the compiler fills the array row by row with the available initial values. The compiler places 1 and 2 in
the first row (x[0]), 3 and 4 in the second row (x[1]), and 5 and 6 in the third row (x[2]). The remaining
members of the array are initialized to zero.

Notes

• See Section 4.9, “Initializers with Designations” for a description of initializers with designations for arrays
and structures.

• A variable-length array cannot be initialized.

4.7.2. Pointers and Arrays
  Data objects in an array can be referenced through pointers instead of using array subscripts. The data type of
such a pointer is referred to as “pointer to array of type”. The array name itself behaves like a pointer, so there are
several alternative methods to accessing array elements. For example:
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int x[5] = { 0, 1, 2, 3, 4 }; /* Array x declared with five elements      
 */
int *p = x;                   /* Pointer declared and initialized to point
 */
                              /* to the first element of the array x      
 */
int a, b;
a = *(x + 3);                 /* Pointer x incremented by twelve bytes    
 */ 
                              /* to reference element 3 of x              
 */
b = x[3];                     /* b now holds the same value as a          
 */

In the previous example, a receives the value 3 by using the dereferencing operator (*). b receives the same value
by using the subscripting operator. See Chapter 6, Expressions and Operators for more information on the different
unary operators.

Note that the assignment of a was a result of incrementing the pointer to x.  This principle, known as scaling,
applies to all types of pointer arithmetic. In scaling, the compiler considers the size of an array element when
calculating memory addresses of array members. For example, each member of the array x is 4 bytes long, and
adding three to the initial pointer value automatically converts that addition to 3 * (the size of the array member,
which in this case is 4). Therefore, the intuitive meaning of z = *(y + 3); is preserved.

When passing arrays as function arguments, only a pointer to the first element of the array is passed to the called
function. The conversion from array type to pointer type is implicit. Once the array name is converted to a pointer
to the first element of the array, you can increment, decrement, or dereference the pointer, just like any other
pointer, to manipulate data in the array. For example:

int func(int *x, int *y) /* The arrays are converted to pointers         */
{
   *y = *(x + 4);        /* Various elements of the arrays are accessed  */
}

Remember that a pointer is large enough to hold only an address; a pointer into an array holds the address of an
element of that array. The array itself is large enough to hold all members of the array.

When applied to arrays, the sizeof operator returns the size of the entire array, not just the size of the first
element in the array.

4.7.3. Variable-Length Arrays
Variable-length arrays allow array objects with auto storage class, and array typedefs declared at block scope,
to have bounds that are runtime-computed expressions.

Variable-length arrays also allow the declaration and definition of functions whose parameters are arrays
dimensioned by other parameters (similar to Fortran assumed-shape arrays).

The following example illustrates both uses. Note that the definition of function sub uses prototype syntax and
that the dimension parameters precede the array parameter that uses them. In order to define a function with the
dimension parameters following the array parameter that uses them, the function definition must be written using
using Kernighan and Ritchie C syntax (because that syntax allows the declarations of the types of the parameters
to be written in a different order from the parameters themselves). Kernighan and Ritchie function definitions
should generally be avoided.

  #include <stdio.h>
  #include <stdlib.h>
 
  void sub(int, int, int[*][*]); 
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  int main(int argc, char **argv) 
  { 
      if (argc != 3) { 
          printf("Specify two array bound arguments.\n"); 
          exit(EXIT_FAILURE); 
      } 
      { 
          int dim1 = atoi(argv[1]); 
          int dim2 = atoi(argv[2]); 
          int a[dim1][dim2]; 
          int i, j, k = 0; 
          for (i = 0; i &lt; dim1; i++) { 
              for (j = 0; j &lt; dim2; j++) { 
                  a[i][j] = k++; 
              } 
          } 
          printf("dim1 = %d, dim2 = %d.", 
                 sizeof(a)/sizeof(a[0]), 
                 sizeof(a[0])/sizeof(int)); 
 
          sub(dim1, dim2, a); 
          sub(dim2, dim1, a); 
      } 
      exit(EXIT_SUCCESS); 
  } 
 
  void sub(int sub1, int sub2, int suba[sub1][sub2]) 
  { 
      int i, j, k = 0; 
      printf("\nIn sub, sub1 = %d, sub2 = %d.", 
                        sub1,      sub2); 
      for (i = 0; i &lt; sub1; i++) { 
          printf("\n"); 
          for (j = 0; j &lt; sub2; j++) { 
              printf("%4d", suba[i][j]); 
          } 
      } 
  }

On OpenVMS systems, variable-length arrays can often be used in place of the non-standard alloca intrinsic,
__ALLOCA.

However, an important difference between __ALLOCA and variable-length arrays is that the storage allocated by
__ALLOCA is not freed until return from the function, while the storage allocated for a variable-length array is
freed on exit from the block in which it is allocated. If __ALLOCA is called within the scope of a variable-length
array declaration (including within a block nested within the block containing a variable-length array declaration),
then the storage allocated by that call to __ALLOCA is freed at the same time that the storage for the variable-length
array is freed (that is, at block exit rather than at function return). The compiler issues a warning in such cases.

4.8. Declaring Structures and Unions
  A structure consists of a list of members whose storage is allocated in an ordered sequence. A union consists of
a sequence of members whose storage overlaps. Structure and union declarations have the same form, as follows:

struct-or-union-specifier:

struct-or-union identifieropt {struct-declaration-list}
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struct-or-union identifier

struct-or-union:

struct
union 

struct-declaration-list:

struct-declaration
struct-declaration-list struct-declaration

struct-declaration:

specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:

type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-list opt

struct-declarator-list:

struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:

declarator
declaratoropt : constant-expression

    Neither a structure nor union member can have a function type or an incomplete type. Structures and unions
cannot contain instances of themselves as members, but they can have pointers to instances of themselves as
members. The declaration of a structure with no members is accepted; its size is zero.

Each structure or union definition creates a unique structure or union type within the compilation unit. The struct
or union keywords can be followed by a tag, which gives a name to the structure or union type in much the same
way that an enum tag gives a name to an enumerated type. The tag can then be used with the struct or union
keywords to declare variables of that type without repeating a long definition.

The tag is followed by braces { } that enclose a list of member declarations. Each declaration in the list gives the
data type and name of one or more members. The names of structure or union members can be the same as other
variables, function names, or members in other structures or unions; the compiler distinguishes them by context.
In addition, the scope of the member name is the same as the scope of the structure or union in which it appears.
The structure or union type is completed when the closing brace completes the list.   

An identifier used for a structure or union tag must be unique among the visible tags in its scope, but the tag
identifier can be the same as an identifier used for a variable or function name. Tags can also have the same
spellings as member names; the compiler distinguishes them by name space and context. The scope of a tag is the
same as the scope of the declaration in which it appears.

Structures and unions can contain other structures and unions. For example:

struct person
   {
      char first[20];
      char middle[3];
      char last[30];
      struct         /*  Nested structure here  */
      {
          int day;
          int month;
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          int year;
      } birth_date;
   }  employees, managers;

Structure or union declarations can take one of the following forms:

• If a declaration includes only a tag and a list of member declarations, then the list of member declarations defines
the tag to be a data type by which other objects can be declared. The tag is considered a shorthand notation for
the structure type. For example:

struct person
   {
      char first[20];
      char middle[3];
      char last[30];
   };
struct person employee;  /* The tag (person) identifies employee as */
                            a structure with members shown in       */
                            the declaration of person               */

• When a declaration includes a tag, a list of member declarations, and a list of identifiers, the identifiers become
objects of the structure type and the tag is considered a shorthand notation, or mnemonic, for the structure type.
The following example shows this:

struct person
   {
      char first[20];
      char middle[3];
      char last[30];
   }  employees, managers;

• If the tag is omitted, the structure or union definition applies only to the identifiers that follow in the declaration.
For example:

struct
   {
      char first[20];
      char middle[3];
      char last[30];
   }  employees, managers;

• The tag can refer to a structure or union type defined elsewhere. The definition is then applied to the variable
identifiers that follow the tag name in the declaration, as in the following example:

struct   person   employees, managers;

   

• Another form uses only the struct or union keyword and the tag to override other identical tags in the
scope, and to reserve the tag for a later definition within a new scope. A definition within a new scope overrides
any previous tag definition appearing in an outer scope. This use of declaring tags is called tentative structure
tag declaration. Using such declarations, you can eliminate ambiguity when making a forward reference to tag
identifiers. The following example shows such a case:

struct  A {...};  /*  Definition of external struct A               */

{
   struct A;   /*  Tentative structure tag declaration.               */
               /*  First declaration of A (in external scope) is 
                   hidden. This structure will be defined later     */
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   struct  inner
   {
      struct A *pointer;          /* Declare a structure pointer by */
       .                          /* forward referencing.           */
       .
       .
   };

   struct A {...};  /* Tentative declaration of internal struct A is 
                       defined here.                                */
               /* External struct A is unaffected by this definition*/
}

In the example, the pointer to the structure defined using the tag A points to the internal definition of A, not
the external definition.

4.8.1. Similarities Between Structures and Unions
 Structures and unions share the following characteristics:

• Their members can be objects of any type, including other structures and unions or arrays. A member can also
consist of a bit field.

• The only operators valid for use with entire structures and unions are the simple assignment (=) and sizeof
operators. In particular, structures and unions cannot appear as operands of the equality (==), inequality (!=), or
cast operators. The two structures or unions in the assignment must have the same members and member types.

• A structure or a union can be passed by value to functions and returned by value by functions. The argument
must have the same type as the function parameter. A structure or union is passed by value just like a scalar
variable; that is, the entire structure or union is copied into the corresponding parameter.

Note

When passing structures as arguments, they might or might not terminate on a longword boundary. If they do not,
VSI C aligns the following argument on the next longword boundary.

4.8.2. Differences Between Structures and Unions
 The difference between structures and unions lies in the way their members are stored and initialized, as follows:

•  Within a structure, the members have addresses that increase as the declarators are read left-to-right. That is,
the members of a structure all begin at different offsets from the base of the structure. The offset of a particular
member corresponds to the order of its declaration; the first member is at offset 0.

A pointer to a structure points to its first member, so no unnamed holes can reside at the beginning of a structure.

On OpenVMS VAX systems, nonbit-field structure members are byte-aligned by default. However, the

#pragma
[no]member_alignment

and #pragma pack preprocessor directives are provided to switch from byte preprocessor directive is
provided to switch from byte alignment to natural alignment.

On Alpha systems, nonbit-field structure members are naturally aligned; each successive nonbit-field structure
member begins at the next byte boundary that matches the alignment appropriate to its type. For example, a
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short integer is aligned on a 2-byte boundary and a long integer is aligned on a 4-byte boundary, so there may
be unnamed holes in a structure.

The length of a naturally-aligned structure on a Alpha processors must be a multiple of the greatest alignment
requirement of any of its members. For example, a structure containing characters, short integers, and longwords
will be a multiple of four in length to match the multiple of four bytes for the longword.

The (#pragma [no]member_alignment) and #pragma pack preprocessor directives are also
supported on this platform.

See your platform-specific VSI C documentation for specific structure alignment requirements and examples.

• In a union, every member begins at offset 0 from the address of the union. The size of the union in memory is
the size of its largest member. The value of only one member can be stored in a union object at a time. When the
storage space allocated to the union contains a smaller member, the extra space between the end of the smaller
member and the end of the allocated memory remains unaltered. The rules for alignment of union members are
the same as for structure members (see your platform-specific VSI C documentation).

A pointer to a union member, converted to the proper type, points to the beginning of the union object.

• Several members of a structure can be initialized at once; only the first member of a union can be given an
initializer.

4.8.3. Bit Fields
One of the advantages of structures is the ability to pack data into them bit-by-bit.  

A structure member often is an object with a basic type size. However, you can also declare a structure member
that is composed only of a specified number of bits. Such a member is called a bit field; its length, an integral
nonnegative constant expression, is set off from the field name by a colon, as shown by the following syntax:  

struct-declarator:

declarator: constant-expression
:constant-expression

Bit fields provide greater control over the structure's storage allocation and allow tighter packing of information
in memory. By using bit fields, data can be densely packed into storage.

A bit field's type must be specified (except with unnamed bit fields), and a bit field can have the int, unsigned
int, or signed int type. The bit field's value must be small enough to store in an object of the declared size.

In the compiler's default mode, the enum, long, short, and char types are also allowed for bit fields.

A bit field can be named or unnamed. A bit-field declaration without a declarator (for example, :10) indicates
an unnamed bit field, which is useful for padding a structure to conform to a specified layout. If the bit field is
assigned a width of 0, it indicates that no further bit fields should be placed in the alignment unit, and it cannot
name a declarator. Use a colon (:) to separate the member's declarator (if any) from a constant expression that
gives the field width in bits. No field can be longer than 32 bits (1 longword).

 Since nonbit-field structure members are aligned on at least byte boundaries, the unnamed form can create
unnamed gaps in the structure's storage. As a special case, an unnamed field of width 0 causes the next member
(normally another field) to be aligned on at least a byte boundary; that is, a bit-field structure member with zero
width indicates that no further bit field should be packed into an alignment unit.

The following restrictions apply to the use of bit fields: 

• You cannot declare arrays of bit fields.

• The ampersand operator (&) cannot be applied to fields, so there cannot be pointers to bit fields.
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Sequences of bit fields are packed as tightly as possible. In C, bit fields are assigned from right to left; that is,
from low-order to high-order bit.

To create bit fields, specify an identifier, a colon, and the identifier's width (in bits) as a structure member.  In the
following example, three bit fields are created in the structure declaration:

struct {
 unsigned int a : 1;  /*  Named bit field (a)    */
 unsigned int   : 0;  /*  Unnamed bit field = 0  */
 unsigned int   : 1;  /*  Unnamed bit field      */
}  class;

The first and third bit fields are one bit wide, the second is zero bits wide, which forces the next member to be
aligned on a natural or byte boundary.

 Bit fields (including zero-length bit fields) not immediately declared after other bit fields have the alignment
requirement imposed by their type, but never a lesser alignment requirement than that of int. In a declaration of
a bit field that immediately follows another bit field, the bits are packed into adjacent space in the same alignment
unit, if sufficient space remains; otherwise, padding is inserted and the second bit field is put into the next alignment
unit.

See your VSI C documentation for platform-specific information on bit-field alignment within a structure.

4.8.4. Initializing Structures
  All structures can be initialized with a brace-enclosed list of component initializers. Structures with automatic
storage class can also be initialized by an expression of compatible type.

Initializers are assigned to components on a one-to-one basis. If there are fewer initializers than members for a
structure, the remaining members are initialized to 0. Listing too many initializers for the number of components
in a structure is an error. All unnamed structure or union members are ignored during initialization. 

Separate initializing values with commas and delimit them with braces { }. The following example initializes two
structures, each with two members:

struct
   {
      int i;
      float c;
   }  a = { 1, 3.0e10 },  b = { 2, 1.5e5 };

The compiler assigns structure initializers in increasing member order. Note that there is no way to initialize a
member in the middle of a structure without also initializing the previous members. Example 4.1, “The Rules for
Initializing Structures” shows the initialization rules applied to an array of structures.

Example 4.1. The Rules for Initializing Structures

#include <stdio.h>

main()
{
   int m, n;
   static struct
      {
         char ch;
         int i;
         float c;
      }  ar[2][3] =
         {
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            {
               { 'a', 1, 3e10 },

               { 'b', 2, 4e10 },
               { 'c', 3, 5e10 },
            }
         };

   printf("row/col\t ch\t i\t      c\n");
   printf("-------------------------------------\n");
   for (n = 0; n < 2; n++)
      for (m = 0; m < 3; m++)
         {
            printf("[%d][%d]:", n, m);
            printf("\t %c \t %d \t %e \n",
                   ar[n][m].ch, ar[n][m].i, ar[n][m].c);
         }
}

Key to Example 4.1, “The Rules for Initializing Structures”:

Delimit an array row initialization with braces.
Delimit a structure initialization with braces.
Delimit an array initialization with braces.

Example 4.1, “The Rules for Initializing Structures” writes the following output to the standard output:

row/col  ch      i            c
-------------------------------------
[0][0]:  a       1       3.000000e+10
[0][1]:  b       2       4.000000e+10
[0][2]:  c       3       5.000000e+10
[1][0]:          0       0.000000e+00
[1][1]:          0       0.000000e+00
[1][2]:          0       0.000000e+00

Note

See Section 4.9, “Initializers with Designations” for a description of initializers with designations for arrays and
structures.

4.8.5. Initializing Unions
Unions are initialized with a brace-enclosed initializer that initializes only the first member of the union.   For
example:

static union
  {
     char ch;
     int i;
     float c;
  } letter = {'A'};

Unions with the auto storage class may also be initialized with an expression of the same type as the union.
For example:

main ()
{
union1 {
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    int i;
    char ch;
    float c;
  } number1 = { 2 };

auto union2
  {
    int i;
    char ch;
    float c;
  } number2 = number1;
}

4.9. Initializers with Designations
In conformance with the C99 standard, VSI C supports the use of designations in the initialization of arrays and
structures. (Note that designations are not supported in the common C, VAX C, and Strict ANSI89 modes of the
compiler.)

4.9.1. Current Object
C99 initializers introduce the concept of a current object and a designation.

The current object is the next thing to be initialized during the initialization of an array or structure.

A designation provides a way to set the current object.  When no designations are present, subobjects of the current
object are initialized in order according to the type of the object: array elements in increasing subscript order, and
structure members in declaration order.

So for an array, the first current object is a[0] when initialization begins; as each initializer is used, the current
object is bumped to the next initializer, in increasing subscript order.

Similarly, for a structure, the current object is the first declaration within the structure when initialization begins;
as each initializer is used, the current object is bumped to the next initializer, in declaration order.

4.9.2. Designations
The C99 Standard allows brace-enclosed initializer lists to contain designations, which specify a new current
object. The syntax for a designation is:

        designation:
                designator-list =

        designator-list:
                designator
                designator-list designator

        designator:
                [ constant-expression ]
                . identifier

A designator within a designation causes the following initializer to begin initialization of the object described by
the designator. Initialization then continues forward, in order, beginning with the next object after that described
by the designator.

For an array, a designator looks like this:

[ integral-constant-expression ]
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If the array is of unknown size, any nonnegative value is valid.

For a structure, a designator looks like this:

 .identifier

Where identifier is a member of the structure.

4.9.3. Examples
The old way of initializing arrays and structures is still supported. However, the use of designators can simplify
coding of initializer lists and better accommodate future changes you might want to make to arrays and structures
in your application.

1. Using designators, array elements can be initialized to nonzero values without depending on their order:

int a[5] = { 0, 0, 0, 5 };  // Old way
int a[5] = { [3]=5 };       // New way 

The designator [3] initializes a[3] to 5.

2. Structure members can be initialized to nonzero values without depending on their order. For example:

typedef struct {
      char flag1;
      char flag2;
      char flag3;
       int data1;
       int data2;
       int data3;
       } Sx;

Sx = { 0, 0, 0, 0, 6 };   // Old way

Sx = { .data2 = 6 };      // New way 

Designator .data2 initializes structure member .data2 to 6.

3. Another example of using designators in an array:

int a[10] = { 1, [5] = 20, 10 };

In this example, the array elements are initialized as follows:

a[0]=1
a[1] through a[4] = 0
a[5] = 20
a[6] = 10
a[7] through a[9] = 0

4. Future changes to structures can be accommodated without changing their initializer lists:

 typedef struct {
      char flag1;
      char flag2;
      char flag3;
       int data1;
       int data2;
       int data3;
       } Sx;
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Sx = { 1, 0, 1, 65, 32, 18 };   // Old way

Sx = { .flag1=1, 0, 1, .data1=65, 32, 18 }; // New way 

Use of designators .flag1 and .data1 allows for future insertion of additional flags in front of .flag1 or
between flag3 and data1.

Designators do not have to be in order. For example, the following two initializer lists are equivalent:

Sx = { .data1=65, 32, 18, .flag1=1, 0, 1 }; 

Sx = { .flag1=1, 0, 1, .data1=65, 32, 18 }; 

5. Space can be "allocated" from both ends of an array by using a single designator:

int a[MAX] =
{
    1, 3, 5, 7, 9, [MAX - 5] = 8, 6, 4, 2, 0
};      

In this example, if MAX is greater than 10, there will be some zero-valued elements in the middle; if it is less
than 10, some of the values provided by the first five initializers will be overridden by the second five.

6. Designators can be nested:

struct { int a[3], b } w[] =
{ [0].a = {1}, [1].a[0] = 2 };

This initialization is equivalent to the following:

w[0].a[0]=1;
w[1].a[0]=2;

7. Another example of nesting designators:

struct {
     int a;
     struct {
          int b
          int c[10]
     }x;
}y = {.x = {1, .c = {[5] = 6, 7 }}}    

This initialization is equivalent to the following:

y.x.b = 1;
y.x.c[5] = 6;
y.x.c[6] = 7;

4.10. Declaring Tags
The following syntax declares the identifier tag as a structure, union, or enumeration tag. If this tag declaration
is visible, a subsequent reference to the tag substitutes for the declared structure, union, or enumerated type. 
Subsequent references of the tag in the same scope (visible declarations) must omit the bracketed list. The syntax
of a tag is:

struct tag { declarator-list }
union tag { declarator-list }
enum tag { enumerator-list }
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If the tag is declared without the complete structure or union declaration, it refers to an incomplete type. Incomplete
enumerated types are illegal. An incomplete type is valid only to specify an object where the type is not required;
for example, during type definitions and pointer declarations. To complete the type, another declaration of the tag
in the same scope (but not within an enclosed block), defines the content.

The following construction uses the tag test to define a self-referencing structure.

struct test {
 float height;
 struct test *x, *y, *z;
};

Once this declaration is given, the following declaration declares s to be an object of type struct test and
sp to be a pointer to an object of type struct test:

struct test s, *sp;

Note

 The keyword typedef can also be used in an alternative construction to do the same thing:

typedef struct test tnode;
struct test {
     float height;
     tnode *x, *y, *z;
};
tnode s, *sp;

4.11. Declaring Type Definitions
   In a declaration whose storage-class specifier is typedef, each declarator defines a typedef name that
specifies an alias for the stated type. A typedef declaration does not introduce a new type, but only introduces
a synonym for the stated type. For example:

typedef int integral_type;
integral_type x;

In the previous example, integral_type is defined as a synonym for int, and so the following declaration
of x declares x to be of type int. Type definitions are useful in cases where a long type name (such as some
forms of structures or unions) benefits from abbreviation, and in cases where the interpretation of the type can be
made easier through a type definition.

A typedef name shares the same name space as other identifiers in ordinary declarators. If an object is redeclared
in an inner scope, or is declared as a member of a structure or union in the same or inner scope, the type specifiers
cannot be omitted from the inner declaration. For example:

typedef signed int t;
typedef int plain;
struct tag {
   unsigned t:4;
   const t:5;
   plain r:5;
};

It is evident that such constructions are obscure. The previous example declares a typedef name t with type
signed int, a typedef name plain with type int, and a structure with three bit-field members, one
named t, another unnamed member, and a third member named r. The first two bit-field declarations differ in that
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unsigned is a type specifier, which forces t to be the name of a structure member by the rule previously given.
The second bit-field declaration includes const, a type qualifier, which only qualifies the still-visible typedef
name t.

The following example shows additional uses of the typedef keyword:

typedef int miles, klicksp(void);
typedef struct { double re, im; } complex;
.
.
.
miles distance;
extern klicksp *metricp;
complex x;
complex z, *zp;

All of the code shown in the previous example is valid. The type of distance is int, the type of metricp
is a pointer to a function with no parameters returning int, and the type of x and z is the specified structure.
zp is a pointer to the structure.

It is important to note that any type qualifiers used with a typedef name become part of the type definition. If
the typedef name is later qualified with the same type qualifier, an illegal construction results. For example:

typedef const int x;
const x y;            /*  Illegal – duplicate qualifier used  */
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Chapter 5. Functions
A C program is a collection of user-defined and system-defined functions. Functions provide a convenient way
to break large computing tasks into smaller ones, which helps in designing modular programs that are easier to
understand and maintain. A function contains zero or more statements to be executed when it is called, can be
passed zero or more arguments, and can return a value.

This chapter discusses the following information about C functions:

• Function calls (Section 5.1, “Function Calls”)

• Function types (Section 5.2, “Function Types”)

• Function definitions (Section 5.3, “Function Definitions”)

• Function declarations (Section 5.4, “Function Declarations”)

• Function prototypes (Section 5.5, “Function Prototypes”)

• Parameters and arguments (Section 5.6, “Parameters and Arguments”)

5.1. Function Calls
 A function call is a primary expression, usually a function identifier followed by parentheses, that is used to
invoke a function. The parentheses contain a (possibly empty) comma-separated list of expressions that are the
arguments to the function. The following is an example of a call to the function power, assuming this function
is appropriately defined:

main()
{
.
.
.
y = power(x,n);                     /* function call */
}

See Section 6.3.2, “Function Calls” for more information on function calls.

5.2. Function Types
  A function has the derived type “function returning type”. The type can be any data type except array types or
function types, although pointers to arrays and functions can be returned. If the function returns no value, its type is
“function returning void”, sometimes called a void function. A void function in C is equivalent to a procedure in
Pascal or a subroutine in FORTRAN. A non-void function in C is equivalent to a function in these other languages.

Functions can be introduced into a program in one of two ways:

• A function definition can create a function designator, define its parameters and their type, define the type of its
return value, and supply the body of the function. In the following example, power is a function returning int:

int power(int base, int exp)     
{  
 int n=1;

 if (exp < 0) 
 {
  printf ("Error: Cannot handle negative exponent\n");
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  return -1;
 }

 for ( ; exp; exp–)  
     n = base * n;

 return n;
}

See Section 5.3, “Function Definitions” for more information on function definitions.

• A function declaration announces the properties of a function defined elsewhere. In the following example, the
function main declares and calls the function power; the definition of the function, where the code is defined,
exists elsewhere:

main()
{  
int power(int base, int exp);       /* function declaration  */
int x, n, y;
.
.
.
y = power(x,n);                     /* function call         */
}

This style of function declaration, in which the parameters are declared in a parameter type list, is called a
function prototype. Function prototypes require the compiler to check function arguments for consistency with
their parameters, and to convert arguments to the declared types of the parameters.

See Sections 5.4 and 5.5 for more information on function declarations and prototypes.

5.3. Function Definitions
   A function definition includes the code for the function. Function definitions can appear in any order, and in one
source file or several, although a function cannot be split between files. Function definitions cannot be nested.

A function definition has the following syntax: 

function-definition:

declaration-specifiersopt  declarator  declaration-listopt  compound-
statement

[declaration-specifiers]

The declaration-specifiers (storage-class-specifier, type-qualifier, and type-specifier) can be listed in any order.
All are optional.

By default, the storage-class-specifier is extern. The static specifier is also allowed. See Section 2.10,
“Storage Classes” for more information on storage-class specifiers.

ANSI allows the type-qualifier to be const or volatile, but either qualifier applied to a function return type
is meaningless, because functions can only return rvalues and the type qualifiers apply only to lvalues.

The type-specifier is the data type of the value returned by the function. If no return type is specified, the function is
declared to return a value of type int. A function can return a value of any type except “array of type” or “function
returning type”. Pointers to arrays and functions can be returned. The value returned, if any, is specified by an
expression in a return statement. Executing a return statement terminates function execution and returns
control to the calling function. For functions that return a value, any expression with a type compatible with the
function's return type can follow return using the following format:
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return expression;

If necessary, the expression is converted to the return type of the function. Note that the value returned by a function
is not an lvalue. A function call, therefore, cannot constitute the left side of an assignment operator.

The following example defines a function returning a character:

char letter(char param1)
{
   .
.
. 
   return param1;
}

The calling function can ignore the returned value. If no expression is specified after return, or if a function
terminates by encountering the right brace, then the return value of the function is undefined. No value is returned
in the case of a void function.

If a function does not return a value, or if the function is always called from within a context that does not require
a value, a return type of void should be specified:

void message()
{
   printf("This function has no return value.");
   return;
}

Specifying a return type of void in a function definition or declaration generates an error under the following
conditions:

• If the function attempts to return a value, an error occurs at the offending return statement.

• If the void function is called in a context that requires a value, an error occurs at the function call site.

[declarator]

The declarator specifies the name of the function being declared. A declarator can be as simple as a single identifier,
such as f1 in the following example:

int f1(char p2)

In the following example, f1 is a “function returning int”. A declarator can also be a more complex construct,
as in the following example:

int (*(*fpapfi(int x))[5])(float)

In this example, fpapfi is a “function (taking an int argument) returning a pointer to an array of five pointers
to functions (taking a float argument) returning int”. See Chapter 4, Declarations for information on specific
declarator syntax.

The declarator (function) need not have been previously declared. If the function was previously declared, the
parameter types and return type in the function definition must be identical to the previous function declaration.

The declarator can include a list of the function's parameters. In VSI C, up to 253 parameters can be specified in
a comma-separated list enclosed in parentheses. Each parameter has the auto storage class by default, although
register is also allowed. There is no semicolon after the right parenthesis of the parameter list.

There are two methods of specifying function parameters:  

• The new or prototype style, which includes a parameter type list. For example:

int f1(char a, int b)
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{ 
function body
}

• The old style, which includes an identifier list; the parameter types are defined in a separate declaration-list
within the function definition, before the left brace that begins the function body. For example:

int f1(a, b)
char a;
int b;
{ 
function body
}

Any undeclared parameters are assumed to be of type int.

A function definition with no parameters is defined with an empty parameter list. An empty parameter list is
specified in either of two ways:

• Using the keyword void if the prototype style is used. For example:

char msg(void)
{ 
return 'a'; 
}

• Using empty parentheses if the old style is used. For example:

char msg()
{ 
return 'a'; 
}

A function defined using the prototype style establishes a prototype for that function. The prototype must agree
with any preceding or following declarations of the same function.

A function defined using the old style does not establish a prototype, but if a prototype exists because of a previous
declaration for that function, the parameter declarations in the definition must exactly match those in the prototype
after the default argument promotions are applied to the parameters in the definition.

Avoid mixing old style and prototype style declarations and definition for a given function. It is allowed but not
recommended.

See Section 5.6, “Parameters and Arguments” for more information on function parameters and arguments. See
Section 5.5, “Function Prototypes” for more information on function prototypes.

[compound-statement]

The compound-statement is the group of declarations and statements surrounded by braces in a function or loop
body. This compound statement is also called the function body. It begins with a left brace ({) and ends with a
right brace (}), with any valid C declarations and statements in between. One or more return statements can
be included, but they are not required.

5.4. Function Declarations
A function can be called without declaring it if the function's return value is int (although this practice is not
recommended due to the loss of type-checking capability; all functions should be declared). If the return value is
anything else, and if the function definition is located after the calling function in the source code, the function
must be declared before calling it. For example:
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char lower(int c);                    /* Function declaration */

caller()                              /* Calling function     */
{
int c;
char c_out;      
      .
      .
      .
c_out = lower(c);                     /* Function call        */

}

char lower(int c_up)                  /* Function definition  */
{
.
.
.
}

If the function definition for lower was located before the function caller in the source code, lower would not
have to be declared again before calling it. In that case, the function definition would serve as its own declaration
and would be in scope for any function calls from within all subsequently defined functions in the same source file.

Note that both the function definition and function declaration for lower are in the prototype style. Although
C supports the old style of function declaration in which the parameter types are not specified in the function
declarator, it is good programming practice to use prototype declarations for all user-defined functions in your
program, and to place the prototypes before the first use of the function. Also note that it is valid for the parameter
identifier in the function declaration to be different from the parameter identifier in the function definition.

In a function declaration, the void keyword should be used to specify an empty argument list. For example:

   char function_name(void);

As with function definitions, the void keyword can also be used in function declarations to specify the return
value type for functions that do not return a value. For example:

main()
{
   void function_name( );
      .
      .
      .
}
void function_name( )
{ }

5.5. Function Prototypes
        A function prototype is a function declaration that specifies the data types of its arguments in the parameter
list. The compiler uses the information in a function prototype to ensure that the corresponding function definition
and all corresponding function declarations and calls within the scope of the prototype contain the correct number
of arguments or parameters, and that each argument or parameter is of the correct data type.

Prototypes are syntactically distinguished from the old style of function declaration. The two styles can be mixed
for any single function, but this is not recommended. The following is a comparison of the old and the prototype
styles of declaration: 

Old style: 
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• Functions can be declared implicitly by their appearance in a call.

• Arguments to functions undergo the default conversions before the call.

• The number and type of arguments are not checked.

Note
The VSI C compiler will warn about old-style function declarations only in strict ANSI standard mode, or when
the check compiler option is specified.

Prototype style:

• Functions are declared explicitly with a prototype before they are called. Multiple declarations must be
compatible; parameter types must agree exactly.

• Arguments to functions are converted to the declared types of the parameters.

• The number and type of arguments are checked against the prototype and must agree with or be convertible to
the declared types. Empty parameter lists are designated using the void keyword.

• Ellipses are used in the parameter list of a prototype to indicate that a variable number of parameters are expected.

5.5.1. Prototype Syntax
A function prototype has the following syntax: 

function-prototype-declaration:

declaration-specifiersopt  declarator;

The declarator includes a parameter type list, which specifies the types of, and can declare identifiers for, the
parameters of the function.

A parameter type list can consist of a single parameter of type void to specify that the function has no parameters.

A parameter type list can contain a member that is a variable-length array, specified by the [*] notation.

In its simplest form, a function prototype declaration might have the following format:

storage_classopt return_typeopt 
function_name ( type1 parameter1, ..., 
typen parametern );

Consider the following function definition:

char  function_name( int lower, int *upper, char (*func)(), double y )
{ }

The corresponding prototype declaration for this function is:

char  function_name( int lower, int *upper, char (*func)(), double y );

A prototype is identical to the header of its corresponding function definition specified in the prototype style, with
the addition of a terminating semicolon (;) or comma (,), as appropriate (depending on whether the prototype is
declared alone or in a multiple declaration).

Function prototypes need not use the same parameter identifiers as in the corresponding function definition because
identifiers in a prototype have scope only within the identifier list. Moreover, the identifiers themselves need not
be specified in the prototype declaration; only the types are required.

For example, the following prototype declarations are equivalent:
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char  function_name( int lower, int *upper, char (*func)(), double y );
char  function_name( int a, int *b, char (*c)(), double d );
char  function_name( int, int *, char (*)(), double );

Though not required, identifiers should be included in prototypes to improve program clarity and increase the
type-checking capability of the compiler.    

Variable-length argument lists are specified in function prototypes with ellipses. At least one parameter must
precede the ellipses. For example:

char  function_name( int lower, ... );

Data-type specifications cannot be omitted from a function prototype.

The C99 standard permits the keyword static to be used within the outermost array bound of a formal parameter
in a prototype function declaration. The effect is to assert to the compiler that at each call to the function, the
corresponding actual argument will provide access to at least as many array elements as specified in the declared
array bound. Consider the following two function definitions:

void foo(int a[1000]){ ... } 
void bar(int b[static 1000]) { ...} 

The declaration of foo is absolutely equivalent to one that declares a to be int *. When compiling the body of
foo, the compiler has no information about how many array elements might exist. The declaration of bar differs
in that the compiler can assume that at least 1000 array elements exist and may be safely accessed. The intent is
to provide a hint to the optimizer about what can be safely pre-fetched.

5.5.2. Scope and Conversions
Prototypes must be placed appropriately in each compilation unit of a program. The position of the prototype
determines its scope. A function prototype, like any function declaration, is considered within the scope of
a corresponding function call only if the prototype is specified within the same block as the function call,
any enclosing block, or at the outermost level of the source file. The compiler checks all function definitions,
declarations, and calls from the position of the prototype to the end of its scope. If you misplace the prototype so
that a function definition, declaration, or call occurs outside the scope of the prototype, any calls to that function
behave as if there were no prototype.

     The syntax of the function prototype is designed so that you can extract the function header of each of your
function definitions, add a semicolon (;), place the prototypes in a header, and include that header at the top of
each compilation unit in your program. In this way, function prototypes are declared to be external, extending the
scope of the prototype throughout the entire compilation unit. To use prototype checking for C library function
calls, place the #include preprocessor directives for the .h files appropriate for the library functions used in
the program.

It is an error if the number of arguments in a function definition, declaration, or call does not match the prototype.

If the data type of an argument in a function call does not match the corresponding type in the function prototype,
the compiler tries to perform conversions. If the mismatched argument is assignment-compatible with the prototype
parameter, the compiler converts the argument to the data type specified in the prototype, according to the argument
conversion rules (see Section 5.6.1, “Argument Conversions”).

If the mismatched argument is not assignment-compatible with the prototype parameter, an error message is issued.

5.6. Parameters and Arguments
  C functions exchange information by means of parameters and arguments. The term parameter refers to any
declaration within the parentheses following the function name in a function declaration or definition; the term
argument refers to any expression within the parentheses of a function call.

The following rules apply to parameters and arguments of C functions:  
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• Except for functions with variable-length argument lists, the number of arguments in a function call must be the
same as the number of parameters in the function definition. This number can be zero.

• The maximum number of arguments (and corresponding parameters) is 253 for a single function. 

• Arguments are separated by commas. However, the comma is not an operator in this context, and the arguments
can be evaluated by the compiler in any order. There is, however, a sequence point before the actual call. 

• Arguments are passed by value; that is, when a function is called, the parameter receives a copy of the argument's
value, not its address. This rule applies to all scalar values, structures, and unions passed as arguments.

• Modifying a parameter does not modify the corresponding argument passed by the function call. However,
because arguments can be addresses or pointers, a function can use addresses to modify the values of variables
defined in the calling function.

• In the old style, parameters that are not explicitly declared are assigned a default type of int.

• The scope of function parameters is the function itself. Therefore, parameters of the same name in different
functions are unrelated.

5.6.1. Argument Conversions
In a function call, the types of the evaluated arguments must match the types of their corresponding parameters.
If they do not match, the following conversions are performed in a manner that depends on whether a prototype
is in scope for the function:

• Arguments to functions specified with prototypes are converted to the parameter types specified in the prototype,
except that arguments corresponding to an ellipsis (...) are converted as if no prototype were in scope. (In this
case, the rules in the following bullet apply.) For example:

void f(char, short, float, ...);

char c1, c2;
short s1,s2;
float f1,f2;

f(c1, s1, f1, c2, s2, f2);

The arguments c1, s1, and f1 are passed with their respective types, while the arguments c2, s2, and f2 are
converted to int, int, and double, respectively.

• Arguments to functions that have no prototype in scope are not converted to the types of the parameters. Instead,
the expressions in the argument list are converted according to the following rules:  

• Any arguments of type float are converted to double.

• Any arguments of types char, unsigned char, short, or unsigned short are converted to int.

• When compiling in common C compatibility mode, VSI C converts any arguments of types unsigned
char or unsigned short to unsigned int.

No other default conversions are performed on arguments. If a particular argument must be converted to match
the type of the corresponding parameter, use the cast operator. For more information about the cast operator, see
Section 6.4.6, “The Cast Operator”.

5.6.2. Function and Array Identifiers as Arguments
Function and array identifiers can be specified as arguments to a function. Function identifiers are specified without
parentheses, and array identifiers are specified without brackets. When so specified, the function or array identifier
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is evaluated as the address of that function or array. Also, the function must be declared or defined, even if its return
value is an integer. Example 5.1, “Declaring Functions Passed as Arguments” shows how and when to declare
functions passed as arguments, and how to pass them.     

Example 5.1. Declaring Functions Passed as Arguments

int x()  { return 25; }             /* Function definition and   */
int z[10];                          /* array defined before use  */

fn(int f1(), int (*f2)(), int a1[]))   /* Function definition       */
{
    f1();                           /* Call to function f1       */
      .
      .
      .
}

void caller(void)
{
   int y();                         /* Function declaration      */

      .
      .
      .
   fn(x, y, z);                     /* Function call: functions  */

                                    /* x and y, and array z      */
                                    /* passed as addresses       */
      .
      .
      .
}
int y(void) { return 30; }          /* Function definition       */

Key to Example 5.1, “Declaring Functions Passed as Arguments”:

Without being declared in a separate declaration, function x can be passed in an argument list because its
definition, located before the function caller, serves as its declaration.
Parameters that represent functions can be declared either as functions or as pointers to functions. Parameters
that represent arrays can be declared either as arrays or as pointers to the element type of the array. For
example:

fn(int f1(), int f2(), int a1[])      /* f1, f2 declared as     */
{...}                                 /* functions; a1 declared */
                                      /* as array of int.       */

fn(int (*f1)(), int (*f2)(), int *a1) /* f1, f2 declared as     */
{...}                                 /* pointers to functions; */
                                      /* a1 declared as pointer */
                                      /* to int.                */

When such parameters are declared as functions or arrays, the compiler automatically converts the
corresponding arguments to pointers.
Because its function definition is located after the function caller, function y must be declared before
passing it in an argument list.
When passing functions as arguments, do not include parentheses. Similarly, when specifying arrays, do not
include subscripts.

5.6.3. Passing Arguments to the main Function

101



Functions

The function called at program startup is named main. The main function can be defined with no parameters
or with two parameters (for passing command-line arguments to a program when it begins executing). The two
parameters are referred to here as argc and argv, though any names can be used because they are local to the
function in which they are declared. A main function has the following syntax:      

int  main(void) {...}
int  main(int argc, char *argv[ ]) {...})

[argc]

The number of arguments in the command line that invoked the program. The value of argc is nonnegative.

[argv]

Pointer to an array of character strings that contain the arguments, one per string. The value argv[argc] is a
null pointer.

If the value of argc is greater than zero, the array members argv[0] through argv[argc - 1] inclusive contain pointers
to strings, which are given implementation-defined values by the host environment before program startup. The
intent is to supply the program with information determined before program startup from elsewhere in the host
environment. If the host environment cannot supply strings with letters in both uppercase and lowercase, the host
environment ensures that the strings are received in lowercase.

If the value of argc is greater than zero, the string pointed to by argv[0] represents the program name; argv[0][0]
is the null character if the program name is not available from the host environment. If the value of argc is greater
than one, the strings pointed to by argv[1] through argv[argc - 1] represent the program parameters.

The parameters argc and argv, and the strings pointed to by the argv array, can be modified by the program and
keep their last-stored values between program startup and program termination.

 In the main function definition, parameters are optional. However, only the parameters that are defined can be
accessed.

See your platform-specific VSI C documentation for more information on the passing and return of arguments
to the main function.

102



Expressions and Operators

Chapter 6. Expressions and
Operators
An expression is any sequence of C operators and operands that produces a value or generates a side effect. The
simplest expressions are constants and variable names, which yield values directly. Other expressions combine
operators and subexpressions to produce values. An expression has a type as well as a value.

Except where noted in this chapter, the order of evaluation of subexpressions, and the order in which side effects
take place, is unspecified. Code that depends on such order might produce unexpected results.

The operands of expressions must have compatible type. In some instances, the compiler makes conversions to
force the data types of the operands to be compatible.

The following sections discuss these topics:

• Primary expressions and operators (Section 6.1, “Primary Expressions”)

• An overview of the C operators (Section 6.2, “Overview of the C Operators”)

• Postfix expressions (Section 6.3, “Postfix Operators”)

• Unary expressions and operators (Section 6.4, “Unary Operators”)

• Binary expressions and operators (Section 6.5, “Binary Operators”)

• The conditional expression and operator (Section 6.6, “Conditional Operator”)

• Assignment expressions and operators (Section 6.7, “Assignment Operators”)

• The comma expression and operator (Section 6.8, “Comma Operator”)

• Constant expressions (Section 6.9, “Constant Expressions”)

• Compound literal expressions (Section 6.10, “Compound Literal Expressions”)

• Data-type conversions (Section 6.11, “Data-Type Conversions”)

6.1. Primary Expressions
Simple expressions are called primary expressions; they denote values. Primary expressions include previously
declared identifiers, constants, string literals, and parenthesized expressions.

Primary expressions have the following syntax: 

primary-expression:

identifier
constant
string-literal
expression

The following sections describe the primary expressions.

6.1.1. Identifiers
An identifier is a primary expression provided it is declared as designating an object or a function.

An identifier that designates an object is an lvalue if its type is arithmetic, structure, union, or pointer. The name of
an array evaluates to the address of the first element of the array; an array name is an lvalue but not a modifiable
lvalue.
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An identifier that designates a function is called a function designator. A function designator evaluates to the
address of the function.

6.1.2. Constants
A constant is a primary expression. Its type depends on its form (integer, character, floating, or enumeration); see
Section 1.9, “Constants”. A constant is never an lvalue.

6.1.3. String Literals
A string literal is a primary expression. Its type depends on its form (character or wchar_t); see Section 1.9,
“Constants”. A string literal is an lvalue.

6.1.4. Parenthesized Expressions
An expression within parentheses has the same type and value as the expression without parentheses would have.
Any expression can be delimited by parentheses to change the precedence of its operators.

6.2. Overview of the C Operators
Variables and constants can be used in conjunction with C operators to create more complex expressions. Table 6.1,
“C Operators” presents the set of C operators.  

Table 6.1. C Operators

Operator Example Description

() f() Function call
[] a[10] Array reference
-> s->a Structure and union member

selection
. s.a Structure and union member

selection
+ [unary] +a Value of a
- [unary] -a Negative of a
* [unary] *a Reference to object at address a
& [unary] &a Address of a
~ ~a One's complement of a
++ [prefix] ++a The value of a after increment
++ [postfix] a++ The value of a before increment
– [prefix] –a The value of a after decrement
– [postfix] a– The value of a before decrement
sizeof sizeof (t1) Size in bytes of object with type t1
sizeof sizeof e Size in bytes of object having the

type of expression e
__typeof__ __typeof__ (t1) Type of type t1
__typeof__ __typeof__ (e) Type of expression e
_Pragma _Pragma (string-literal) destringize string-literal
+ [binary]

- [binary]

a + b

a - b

a plus b

a minus b
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Operator Example Description
* [binary] /

%

a * b

a / b

a % b

a times b

a divided by b

Remainder of a/b
>>

<<

a >> b

a << b

a, right-shifted b bits

a, left-shifted b bits
<

>

<=

>=

==

!=

a < b

a > b

a <= b

a >= b

a == b

a != b

1 if a < b; 0 otherwise

1 if a > b; 0 otherwise

1 if a <= b; 0 otherwise

1 if a >= b; 0 otherwise

1 if a equal to b; 0 otherwise

1 if a not equal to b; 0 otherwise
& [binary]

|

^

a & b

a | b

a ^ b

Bitwise AND of a and b

Bitwise OR of a and b

Bitwise XOR (exclusive OR) of a
and b

&&

!

a && b

a || b

!a

Logical AND of a and b (yields 0 or
1)

Logical OR of a and b (yields 0 or
1)

Logical NOT of a (yields 0 or 1)
?: a ? e1 : e2 Expression e1 if a is nonzero;

Expression e2 if a is zero
=

+=

-=

*=

/=

%=

>>=

<<=

&=

|=

^=

,

a = b

a += b

a -= b

a *= b

a /= b

a %= b

a >>= b

a <<= b

a &= b

a |= b

a ^= b

e1,e2

a, after b is assigned to it

a plus b (assigned to a)

a minus b (assigned to a)

a times b (assigned to a)

a divided by b (assigned to a)

Remainder of a/b (assigned to a)

a, right-shifted b bits (assigned to a)

a, left-shifted b bits (assigned to a)

a AND b (assigned to a)

a OR b (assigned to a)

a XOR b (assigned to a)

e2 (e1 evaluated first)
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The C operators fall into the following categories: 

• Postfix operators, which follow a single operand.

• Unary prefix operators, which precede a single operand.

• Binary operators, which take two operands and perform a variety of arithmetic and logical operations.

• The conditional operator (a ternary operator), which takes three operands and evaluates either the second or
third expression, depending on the evaluation of the first expression.

• Assignment operators, which assign a value to a variable.

• The comma operator, which guarantees left-to-right evaluation of comma-separated expressions.

Operator precedence determines the grouping of terms in an expression. This affects how an expression is
evaluated.  Certain operators have higher precedence than others; for example, the multiplication operator has
higher precedence than the addition operator:

x = 7 + 3 * 2;        /* x is assigned 13, not 20   */

The previous statement is equivalent to the following:

x = 7 + ( 3 * 2 );

Using parenthesis in an expression alters the default precedence. For example:

x = (7 + 3) * 2;  /*  (7 + 3) is evaluated first    */

In an unparenthesized expression, operators of higher precedence are evaluated before those of lower precedence.
Consider the following expression:

A+B*C

The identifiers B and C are multiplied first because the multiplication operator (*) has higher precedence than the
addition operator (+).

Table 6.2, “Precedence of C Operators” shows the precedence the compiler uses to evaluate the C operators.
Operators with the highest precedence appear at the top of the table; those with the lowest appear at the bottom.
Operators of equal precedence appear in the same row.        

Table 6.2. Precedence of C Operators

Category Operator Associativity

Postfix ( ) [] -> . ++ – Left to right
Unary + - ! ~ ++ – (type)

* & sizeof

Right to left

Multiplicative * / % Left to right
Additive + - Left to right
Shift << >> Left to right
Relational < <= > >= Left to right
Equality == != Left to right
Bitwise AND & Left to right
Bitwise XOR ^ Left to right
Bitwise OR | Left to right
Logical AND && Left to right
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Category Operator Associativity

Logical OR || Left to right
Conditional ?: Right to left
Assignment = += -= *= /= %=

>>= <<= &= ^= |=

Right to left

Comma , Left to right

Associativity relates to precedence, and resolves any ambiguity over the grouping of operators with the same
precedence.  In the following statement, the rules of C specify that a * b is evaluated first:

y = a * b / c;

In a more complicated example, associativity rules specify that b ? c : d is evaluated first in the following
example:

a ? b ? c : d : e;

The associativity of the conditional operator is right-to-left on the line. The assignment operator also associates
right-to-left; for example:

int x = 0 , y = 5, z = 3;
x = y = z;                  /*  x has the value 3, not 5    */

Other operators associate left-to-right; for example, the binary addition, subtraction, multiplication, and division
operators all have left-to-right associativity.

Associativity applies to each row of operators in Table 6.2, “Precedence of C Operators” and is right-to-left for
some rows and left-to-right for others. The kind of associativity determines the order in which operators from the
same row are evaluated in an unparenthesized expression. Consider the following expression:

A*B%C

This expression is evaluated as follows because the multiplicative operators (*, /, %) are evaluated from
left to right:

(A*B)%C

Parentheses can always be used to control precedence and associativity within an expression.

6.3. Postfix Operators
Postfix expressions include array references, function calls, structure or union references, and postfix increment
and decrement expressions. The operators in postfix expressions have left-to-right associativity.

Postfix expressions have the following syntax: 

postfix-expression:

array-reference 
function-call 
structure-and-union-member-reference 
postfix-increment-expression 
postfix-decrement-expression 

6.3.1. Array References
The bracket operator [ ] is used to refer to an element of an array. Array references have the following syntax:
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array-reference:

postfix-expression [ expression ]

For example, in a one-dimensional array, you can refer to a specific element within the array as follows:

int sample_array[10];  /* Array declaration; array has 10 elements */
sample_array[0] = 180; /* Assign value to first array element      */

This example assigns a value of 180 to the first element of the array, sample_array[0]. Note that C uses zero-
origin array subscripting.

In a two-dimensional array (more properly termed an array of arrays), you can refer to a specific element within
the array, as follows:

int sample_array[10][5];  /* Array declaration; array has 50 elements */
sample_array[9][4] = 180; /* Assign value to last array element       */

This example assigns a value of 180 to the element sample_array[9][4].

Conceptually, multidimensional arrays are of type arrays of arrays of arrays .... Therefore, if an array reference is
not fully qualified, it refers to the address of the first element in the dimension that is not specified. For example:

int sample_array[10][5]; /* Array declaration                      */
int *p1;                 /* Pointer declaration                    */
 
p1 = sample_array[7];    /* Assigns address of subarray to pointer */

In this example, p1 contains the address of the first element in the one-dimensional subarray
sample_array[7]. Although, as in this example, a partially qualified array can be used as an rvalue, only a
fully qualified array reference can be used as an lvalue. For example, C does not allow the following statement,
in which the second dimension of the array is omitted:

int sample_array[10][5]; /* Array declaration                      */

sample_array[7] = 21;    /* Error                                  */

A reference to an array name with no bracket can be used to pass the array's address to a function, as in the
following statement:

funct(sample_array);

Bracket operators can also be used to perform general pointer arithmetic as follows:

p1[intexp]

Here, p1 is a pointer and intexp is an integer-valued expression. The result of the expression is the value
pointed to by p1 incremented by the value of intexp multiplied by the size, in bytes, of the addressed object
(array element). The expressions *(p1 + intexp) and p1[intexp] are defined to be equivalent; both
expressions refer to the same memory location and have the same type. Array subscripting is a commutative
operation: intexp[p1] is equivalent to p1[intexp]. A subscripted expression is always an lvalue.

6.3.2. Function Calls
Function calls have the following syntax:

function-call:

postfix-expression ( argument-expression-listopt )

argument-expression-listopt:
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assignment-expression
argument-expression-listopt, assignment-expression
 

A function call is a postfix expression consisting of a function designator followed by parentheses. The order of
evaluation of any expressions in the function parameter list is undefined, but there is a sequence point before the
actual call. The parentheses can contain a list of arguments (separated by commas) or can be empty. If the function
called has not been declared, it is assumed to be a function returning int.

To pass an argument that is an array or function, specify the identifier in the argument list without brackets or
parentheses. The compiler passes the address of the array or function to the called routine, which means that the
corresponding parameters in the called function must be declared as pointers.

In the following example, func1 is declared as a function returning double; the number and type of the
parameters are not specified:

double func1();

The function func1 can then be used in a function call, as follows:

result = func1(c);
      or
result = func1();

The identifier func1 can also be used in other contexts, without the parentheses. For example, as an argument
to another function call:

dispatch(func1);

 

In this example, the address of the function func1 is passed to the function dispatch. In general, if an identifier
is declared as a “function returning...” type, it is converted to “the address of function returning...” when that
identifier is passed as an argument without its parentheses; the only exception is when the function designator is
the operand of the unary & operator, in which case this conversion is explicit.

Functions can also be called by dereferencing a pointer to a function. In the following example, pf is declared as
a pointer to a function returning double and assigned the address of the function func1:

double (*pf)( );
.
.
.
pf = func1;

The function func1 can then be called as follows:

result = (*pf)();

Although this function call is valid, the following form of the same function call is simpler:

result = pf();

In function calls, if the expression that denotes the called function has a type that does not include a prototype,
the integer promotions discussed in Section 6.11.3, “Function Argument Conversions” are performed on each
applicable argument, and arguments that have type float are converted to double. These are called the default
argument promotions. If the number of passed arguments does not agree with the number of parameters, the
behavior is undefined. If the function is defined with a type that does not include a prototype, and the types of
the arguments after promotion are not compatible with the types of the parameters after promotion, the behavior
is undefined. If the function is defined with a type that includes a prototype, and the types of the arguments after
promotion are not compatible with the types of the parameters, or if the prototype ends with an ellipsis punctuator
(indicating a variable-length parameter list), the behavior is undefined.  
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If the expression that denotes the called function has a type that includes a prototype, the passed arguments are
implicitly converted to the types of the corresponding parameters. The ellipsis punctuator in a function prototype
causes argument type conversion to stop after the last declared parameter. The default argument promotions are
performed on trailing arguments. If the function is defined with a type that is not compatible with the type pointed
to by the expression that denotes the called function, the behavior is undefined.

No other conversions are implicitly performed; in particular, the number and types of arguments are not compared
with those of the parameters in a function definition that does not include a prototype.

Recursive function calls are permitted, both directly and indirectly through any chain of other functions.

6.3.3. Structure and Union References
A member of a structure or union can be referenced either directly using the

dot (.)

operator, or indirectly using the arrow (->) operator.

Structure and union references (also called component selections) have the following syntax:

structure-and-union-reference:

postfix-expression . identifier
postfix-expression -> identifier

The arrow operator always produces an lvalue. The dot operator produces an lvalue if the postfix expression is
an lvalue.

In a direct member selection, the first operand must designate a structure or union, and the identifier must name
a declared member of that structure or union.

In an indirect member selection, the first operand must be a pointer to a structure or union, and the identifier must
name a declared member of that structure or union. The arrow operator is specified with a hyphen (-) and a greater-
than symbol (>) and designates a reference to the structure or union member. The expression

E1->name

is, by definition, precisely the same as (*E1).name. This also implies that E2.name is the same as (&E2)->name,
if E2 is an lvalue.

A named structure member must be fully qualified; that is, it must be preceded by a list of the names of any higher-
level members separated by periods, arrows, or both. The value of the expression is the named member of the
structure or union, and its type is the type of that member. For more information about structures and unions, see
Sections 3.4.4 and 3.4.5.

With one exception, if a member of a union is accessed after a value has been stored in a different member of that
union, the result is dependent on the data types of the members referenced and their alignment within the union.

The exception exists to simplify the use of unions. If a union contains several structures that share a common initial
sequence, and if the union currently contains one of these structures, you can inspect the common initial part of
any of them. Two structures share a common initial sequence if corresponding members have compatible types
(and for bit fields, the same width) for a sequence of one or more initial members.

6.3.4. Postfix Increment and Decrement Operators
C has two unary operators for incrementing and decrementing objects of scalar type. Postfix incrementation has
the following syntax:

postfix-increment-expression:
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postfix-expression ++

Postfix decrementation has the following syntax:

postfix-decrement-expression:

postfix-decrement-expression:

postfix-expression – –

The increment operator ++ adds 1 to its operand, and the decrement operator – subtracts 1, except when the
operand is a pointer. If the operand is a pointer of type pointer to T, the pointer is incremented (or decremented)
by sizeof(T). The effect is to point to the next (or previous) element within an array of objects of type T.

Both ++ and – can be used either as prefix operators (before the operand: ++n) or postfix operators (after the
operand: n++). In both cases, the effect is to increment n. The expression ++n increments n before its value is
used, while n++ increments n after its value is used.

Section 6.4.3, “Prefix Increment and Decrement Operators” describes the prefix form of the increment and
decrement operators. This section addresses the postfix form.

Consider the following expression:

lvalue++

The postfix operator ++ adds the constant 1 to the operand, modifying the operand. The value of the expression is
the value of the operand incremented by 1; otherwise, the result of the expression is the old value of the operand,
before it was incremented. For example:

int i, j;
j = 5;
j++;                   /* j = 6 (j incremented by 1) */
i = j++;               /* i = 6, j = 7               */ 

When using the increment and decrement operators, do not depend on the order of evaluation of expressions.
Consider the following ambiguous expression:

k = x[j] + j++;

It is unspecified whether the value of j in x[j] is evaluated before or after j is incremented. To avoid ambiguity,
increment the variable in a separate statement, as in the following example:

j++;
k = x[j] + j;

The ++ and – operators can also be used with floating-point objects. In this case they scale the object by 1.0.

6.4. Unary Operators
Unary expressions are formed by combining a unary operator with a single operand. All unary operators are of
equal precedence and have right-to-left associativity. The unary operators are:

• Unary minus (-) and unary plus (+) (see Section 6.4.1, “Unary Plus and Minus”)

• Logical negation (!) (see Section 6.4.2, “Logical Negation”)

• Prefix increment (++) and decrement (–) (see Section 6.4.3, “Prefix Increment and Decrement Operators”)

• Address operator (&) and indirection (*) (see Section 6.4.4, “Address Operator and Indirection”)

• Bitwise negation (one's complement) (~) (see Section 6.4.5, “Bitwise Negation”)
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• Cast operator (see Section 6.4.6, “The Cast Operator”)

• sizeof operator (see Section 6.4.7, “The sizeof Operator”)

6.4.1. Unary Plus and Minus
Consider the following expression:

-- expression

This is the negative of the operand. The operand must have an arithmetic type, and integer promotion is applied.
The additive inverse of an unsigned quantity is computed by subtracting the quantity from the largest value of
the unsigned type plus one.

The unary plus operator returns the value of an expression:

+ expression

Neither the unary plus nor unary minus operators produce lvalues.

6.4.2. Logical Negation
 Consider the following expression:

! expression

The result is the logical (Boolean) negation of the expression. If the value of the expression is 0, the negated result
is 1; if the value of the expression is not 0, the negated result is 0. The type of the result is int. The expression
must have a scalar type.

6.4.3. Prefix Increment and Decrement Operators
C has two unary operators for incrementing and decrementing scalar objects. The increment operator ++ adds 1
to its operand; the decrement operator – subtracts 1. Both ++ and – can be used either as prefix operators (before
the variable: ++n) or postfix operators (after the variable: n++). In both cases, the effect is to increment n. The
expression ++n increments n before its value is used, while n++ increments n after its value is used.

Section 6.3.4, “Postfix Increment and Decrement Operators” describes the postfix increment and decrement
operators. This section describes the prefix form.

Consider the following expression:

++modifiable lvalue

After evaluating this expression, the result is the incremented rvalue, not the corresponding lvalue. For this reason,
expressions that use the increment and decrement operators in this manner cannot appear by themselves on the
left side of an assignment expression where an lvalue is needed.

If declared as an integer or floating-point number, the operand is increased or decreased by 1 (or 1.0). The results
of the following C statements are equivalent:

i = i + 1;
i++;
++i;
i += 1;

The following example shows the difference between the postfix and prefix forms of the increment operator:

int i, j;
j = 5;
i = ++j;                      /*  i = 6, j = 6  */

112



Expressions and Operators

i = j++;                      /*  i = 6, j = 7  */

If the operand is a pointer, the address is incremented by the size of the addressed object as determined by its data
type, not by the integer value 1. For example:

char *cp;
int  *ip;
++cp;             /* Incremented by sizeof(char) */
++ip;             /* Incremented by sizeof(int)  */

Consider the following expression:

-- modifiable lvalue

The prefix operator -- is similar to the prefix operator ++ except that the value of the operand is decremented.

When using the increment and decrement operators, do not depend on the order of evaluation of expressions.
Consider the following ambiguous expression:

k = x[j] + ++j;

It is unspecified whether the value of j in x[j] is evaluated before or after j is incremented. To avoid ambiguity,
increment the variable in a separate statement, as in the following example:

++j;
k = x[j] + j;

6.4.4. Address Operator and Indirection
Consider the following expression:

&lvalue

This expression results in the address of the lvalue. The lvalue can be a function designator or any lvalue that
designates an object, including an unqualified array identifier. The lvalue cannot be a register variable or a
bit field.

Consider the following expression:

*pointer

When an expression resolves to an address, the value stored at that address can be accessed by using the
dereferencing operator (*).

If the operand of * is a function name or function pointer, then the result is a function designator. If the operand of
* is a pointer to an object, then the result is an lvalue designating the object. If an invalid value (0, for example)
is assigned to the pointer, then the * operation is undefined.

The dereferencing operator * always produces an lvalue. The address operator & never produces an lvalue.

6.4.5. Bitwise Negation
Consider the following expression:

~ expression

The result is the bitwise negation (one's complement) of the evaluated expression. Each 1-bit is converted into
a 0-bit and vice versa. The expression must have an integer type. The compiler performs the usual arithmetic
conversions (see Section 6.11.1, “Usual Arithmetic Conversions”).
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6.4.6. The Cast Operator
The cast operator forces the conversion of its scalar operand to a specified scalar data type, or to void. The
operator consists of a type-name, in parentheses, that precedes an expression, as follows:

( type-name ) expression

The value of the expression is converted to the named data type, as if the expression were assigned to a variable
of that type. The expression's type and value are not themselves changed; the value is converted to the cast type
for the duration of the cast operation. The type-name has the following syntax:

type-name:

type-specifier abstract-declarator

In simple cases, type-specifier is the keyword for a data type, such as char or double, and abstract-declarator
is empty. For example:

(int)x;

The type-specifier can also be an enum specifier, or a typedef name. The type-specifier can be a structure or
union only if the abstract-declarator is a pointer. That is, the type-name can be a pointer to a structure or union,
but cannot be a structure or union because structures and unions are not scalar types. For example:

(struct abc *)x   /* allowed     */

(struct abc)x     /* not allowed */

The abstract-declarator in a cast operation is a declarator without an identifier. Abstract declarators have the
following syntax: 

abstract-declarator:

empty
abstract-declarator 
* abstract-declarator
abstract-declarator ( )
abstract-declarator [ constant-expression ]

The abstract-declarator cannot be empty in the following form:

(abstract-declarator)

Abstract declarators can include the brackets and parentheses that indicate arrays and functions. However, cast
operations cannot force the conversion of any expression to an array, function, structure, or union. The brackets
and parentheses are used in operations such as the following example, which casts the identifier P1 to pointer
to array of int:

(int (*)[10]) P1;

This kind of cast operation does not change the contents of P1; it only causes the compiler to treat the value of
P1 as a pointer to such an array. For example, casting pointers this way can change the scaling that occurs when
an integer is added to a pointer:

int *ip;
((char *)ip) + 1;   /* Increments by 1 not by 4 */

Cast operators can be used in the following conversions that involve pointers:

• A pointer can be converted to an integral type. A pointer occupies the same amount of storage as objects of
type int or long (or their unsigned equivalents). Therefore, a pointer can be converted to any of these
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integer types and back again without changing its value. No scaling takes place, and the representation of the
value does not change.

Converting from a pointer to a shorter integer type is similar to converting from an unsigned long type to
a shorter integer type; that is, the high-order bits of the pointer are discarded.

Converting from a shorter integer type to a pointer is similar to the conversion from a shorter integer type to an
object of unsigned long type; that is, the high-order bits of the pointer are filled with copies of the sign bit.
VSI C, with the check option enabled, issues a warning message for cast operations of this type.

• A pointer to an object or incomplete type can be converted to a pointer to a different object or a different
incomplete type. The resulting pointer might not be valid if it is improperly aligned for the type pointed to. It is
guaranteed, however, that a pointer to an object of a given alignment can be converted to a pointer to an object
of the same alignment or less strict alignment, and back again. The result is equal to the original pointer. (An
object of character type has the least strict alignment.)

• A pointer to a function of one type can be converted to a pointer to a function of another type and back again;
the result is equal to the original pointer. If a converted pointer is used to call a function that has a type not
compatible with the type of the called function, the behavior is undefined.

6.4.7. The sizeof Operator
Consider the syntax of the following expressions:

sizeof expression
sizeof ( type-name )

type-name cannot be an incomplete type, function type, or a bit field. The sizeof operator produces a compile-
time integer constant value. expression is inspected only to deduce its type; it is not fully evaluated. For example,
sizeof(i++) is equivalent to sizeof(i).

The result of the sizeof operation is the size, in bytes, of the operand. In the first case, the result of sizeof
is the size determined by the type of the expression. In the second case, the result is the size of an object of the
named type. The expression should be enclosed in parentheses if it contains operators, because the precedence of
sizeof is higher than that of most operators.

The syntax of type-name is the same as that for the cast operator. For example:

int  x;
x = sizeof(char *);  /* assigns the size of a character pointer to x */

The type of the sizeof operator's result, size_t, is an unsigned integer type. In VSI C, size_t is unsigned
int.

6.4.8. The __typeof__ Operator
The __typeof__ operator is another way to refer to the type of an expression. This feature is provided for
compatiblity with the gcc compiler.

The syntax of this operator keyword looks like sizeof, but the construct acts semantically like a type-name
defined with typedef.

__typeof__ ( expression )
__typeof__ ( type-name )

There are two ways of writing the argument to __typeof__: with an expression or with a type.

The following is an example with an expression. This example assumes that x is an array of ints; the type
described is int:
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__typeof__(x[0](1))

The following is an example with a type-name as the argument. The type described is that of pointers to int:

__typeof__(int *)

A __typeof__ construct can be used anywhere a typedef name can be used. For example, you can use it in
a declaration, in a cast, or inside a sizeof or __typeof__ operator:

__typeof__(*x) y;     // Declares y with the type of what x points to.
__typeof__(*x) y[4];  // Declares y as an array of such values.
__typeof__(__typeof__(char *)[4]) y;  // Declares y as an array of 
                                      // pointers to characters:

The last example (the nested __typeof__ operators) is equivalent to the following traditional C declaration:

char *y[4];

To see the meaning of the declaration using __typeof__, and why it might be a useful way to write it that way,
let's rewrite it with these macros:

#define pointer(T)  __typeof__(T *)
#define array(T, N) __typeof__(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

6.4.9. The _Pragma Operator
The _Pragma operator destringizes its string literal argument, effectively allowing #pragma directives to be
produced by macro expansion. When specified using this operator, the tokens of the pragma, which appear together
within a single string literal in this form, are not macro expanded, even if they have _m suffix. But macro expansion
can be accomplished if desired by using the stringization operator (#) to form the string (see Section 8.1.3,
“Conversions to String Literals (#)”).

The _Pragma operator has the following syntax:

_Pragma ( string-literal )

A _Pragma operator expression is processed as follows: The string literal is destringized by deleting the L prefix,
if present, deleting the leading and trailing double-quotes, replacing each escape sequence \" by a double-quote,
and replacing each escape sequence \\ by a single backslash.

The resulting sequence of characters is processed through translation phase 3 to produce preprocessing tokens that
are executed as if they were the pp-tokens in a pragma directive. The original four preprocessing tokens in the
unary operator expression are removed.

Example: A directive of the form:

#pragma listing on "..\listing.dir"

can also be expressed as:

_Pragma ( "listing on \"..\\listing.dir\"" )

The latter form is processed in the same way, whether it appears literally as shown, or results from macro
replacement, as in:
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#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x)  _Pragma(#x)

LISTING ( ..\listing.dir )

6.5. Binary Operators
The binary operators are categorized as follows:

• Multiplicative operators: multiplication (*), remainder (%), and division (/) (see Section 6.5.1, “Multiplicative
Operators”)

• Additive operators: addition (+) and subtraction (–) (see Section 6.5.2, “Additive Operators”)

• Shift operators: left shift (<<) and right shift (>>) (see Section 6.5.3, “Shift Operators”)

• Relational operators: less than (<), less than or equal to (<=), greater than (>), and greater than or equal to (>=)
(see Section 6.5.4, “Relational Operators”)

• Equality operators: equality (==) and inequality (!=) (see Section 6.5.5, “Equality Operators”)

• Bitwise operators: AND (&), OR (|), and XOR (^) (see Section 6.5.6, “Bitwise Operators”)

• Logical operators: AND (&&) and OR (||) (see Section 6.5.7, “Logical Operators”)

The following sections describe these binary operators.

6.5.1. Multiplicative Operators
The multiplicative operators are *, /, and %. Operands must have arithmetic type. Operands are converted, if
necessary, according to the usual arithmetic conversion rules (see Section 6.11.1, “Usual Arithmetic Conversions”).

The * operator performs multiplication.

The / operator performs division. When integers are divided, truncation is toward zero. If either operand is negative,
the result is truncated toward zero (the largest integer of lesser magnitude than the algebraic quotient).

The % operator divides the first operand by the second and yields the remainder. Both operands must be integral.
When both operands are unsigned or positive, the result is positive. If either operand is negative, the sign of the
result is the same as the sign of the left operand.

The following statement is true if b is not zero:

(a/b)*b + a%b == a;

The VSI C compiler, with the check option enabled, issues warnings for these undefined behaviors:

• Integer overflow occurs

• Division by zero is attempted

• Remainder by zero is attempted

6.5.2. Additive Operators
The additive operators + and - perform addition and subtraction, respectively. Operands are converted, if necessary,
according to the usual arithmetic conversion rules (see Section 6.11.1, “Usual Arithmetic Conversions”).

When two enum constants or variables are added or subtracted, the type of the result is int.
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When an integer is added to or subtracted from a pointer expression, the integer is scaled by the size of the object
being pointed to. The result has the pointer's type. For example:

int arr[10];
int *p = arr;
p = p + 1;  /* Increments by sizeof(int) */

An array pointer can be decremented by subtracting an integral value from a pointer or address; the same
conversions apply as for addition. Pointer arithmetic also applies one element beyond the end of the array. For
example, the following code works because the pointer arithmetic is limited to the elements of the array and to
only one element beyond:

int i = 0;
int x[5] = {0,1,2,3,4};
int y[5];
int *ptr = x;
while (&y[i] != (ptr + 5)) { /*  ptr + 5 marks one beyond the end of the
 array */
  y[i] = x[i];
  i++;
}

When two pointers to elements of the same array are subtracted, the result (calculated by dividing the difference
between the two addresses by the length of one element) is of type ptrdiff_t, which in VSI C is int, and
represents the number of elements between the two addressed elements. If the two elements are not in the same
array, the result of this operation is undefined.

6.5.3. Shift Operators
The shift operators << and >> shift their left operand to the left or to the right, respectively, by the number of
bits specified by the right operand. Both operands must be integral. The compiler performs integral promotions
on each of the operands (see Section 6.11.1.1, “Characters and Integers”). The type of the result is the type of the
promoted left operand. Consider the following expression:

E1 << E2

The result is the value of expression E1 shifted to the left by E2 bits. Bits shifted off the end are lost. Vacated
bits are filled with zeros. The effect of shifting left is to multiply the left operand by 2 for each bit shifted. In the
following example, the value of i is 100:

int n = 25;
int m = 2;
int i;

i = n << m;

Consider the following expression:

E1 >> E2

The result is the value of expression E1 shifted to the right by E2 bits. Bits shifted off the end are lost. If E1 is
unsigned or if E1 has a signed type but nonnegative value, vacated bits are filled with zeros. If E1 has a signed
type and negative value, vacated bits are filled with ones.

The result of the shift operation is undefined if the right operand is negative or if its value is greater than the
number of bits in an int.

For a nonnegative left operand, the effect of shifting right is to divide the left operand by 2 for each bit shifted.
In the following example, the value of i is 12:
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int n = 100;
int m = 3;
int i;

i = n >> m;

6.5.4. Relational Operators
The relational operators compare two operands and produce a result of type int. The result is 0 if the relation is
false, and 1 if it is true. The operators are: less than (<), greater than (>), less than or equal (<=), and greater than
or equal (>=). Both operands must have an arithmetic type or must be pointers to compatible types. The compiler
performs the necessary arithmetic conversions before the comparison (see Section 6.11.1, “Usual Arithmetic
Conversions”).

When two pointers are compared, the result depends on the relative locations of the two addressed objects. Pointers
to objects at lower addresses are less than pointers to objects at higher addresses. If two addresses indicate elements
in the same array, the address of an element with a lower subscript is less than the address of an element with a
higher subscript.

The relational operators associate from left to right. Therefore, the following statement relates a to b, and if a is
less than b, the result is 1 (true). If a is greater than or equal to b, the result is 0 (false). Then, 0 or 1 is compared
with c for the expression result. This statement does not determine “if b is between a and c”.

if ( a < b < c )
    statement;

To check if b is between a and c, use the following code:

if ( a < b && b < c )
    statement;

6.5.5. Equality Operators
The equality operators, equal (==) and not-equal (!=), produce a result of type int, so that the result of the
following statement is 1 if both operands have the same value, and 0 if they do not:

a == b

Operands must have one of the following type combinations:

• Both operands have an arithmetic type.

• Both operands are pointers to qualified or unqualified versions of compatible types.

• One operand is a pointer to an object or incomplete type and the other is a pointer to a qualified or unqualified
version of void.

• One operand is a pointer and the other is a null pointer constant.

Operands are converted, if necessary, according to the usual arithmetic conversion rules (see Section 6.11.1, “Usual
Arithmetic Conversions”).

Two pointers or addresses are equal if they identify the same storage location.

Note
Although different symbols are used for assignment (=) and equality (==), C allows either operator in all contexts,
so be careful not to confuse them. Consider the following example:

if ( x = 1 )
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    statement_1;
else
    statement_2;

In this example, statement_1 always executes, because the result of the assignment x = 1 is equivalent to
the value of x, which equals 1 (or true).

6.5.6. Bitwise Operators
The bitwise operators require integral operands. The usual arithmetic conversions are performed (see
Section 6.11.1, “Usual Arithmetic Conversions”). The result of the expression is the bitwise AND (&), inclusive
OR (|), or exclusive OR (^), of the two operands. The order of evaluation of their operands is not guaranteed.

The operands are evaluated bit by bit. The result of the & operator is 0 if one bit value is 0 and the other is 1, or
if both bit values are 0. The result is 1 if both bit values are 1.

The result of the | operator is 0 if both bit values are 0. The result for each bit is 1 if either bit value is 1, or both
bit values are 1.

The result of the ^ operator is 0 if both bit values are 0, or if both bit values are 1. The result for each bit is 1 if
either bit value is 1 and the other is 0.

6.5.7. Logical Operators
The logical operators are AND (&&) and OR (||). These operators guarantee left-to-right evaluation. The result
of the expression (of type int) is either 0 (false) or 1 (true). The operands need not have the same type, but both
types must be scalar. If the compiler can make an evaluation by examining only the left operand, the right operand
is not evaluated. Consider the following expression:

E1 && E2

The result of this expression is 1 if both operands are nonzero, or 0 if one operand is 0. If expression E1 is 0,
expression E2 is not evaluated because the result is the same regardless of E2's value.

Similarly, the following expression is 1 if either operand is nonzero, and 0 otherwise. If expression E1 is nonzero,
expression E2 is not evaluated, because the result is the same regardless of E2's value.

E1 || E2

6.6. Conditional Operator
    The conditional operator (?:) takes three operands. It tests the result of the first operand and then evaluates one
of the other two operands based on the result of the first. Consider the following example:

E1  ?  E2  :  E3

If expression E1 is nonzero (true), then E2 is evaluated, and that is the value of the conditional expression. If E1
is 0 (false), E3 is evaluated, and that is the value of the conditional expression. Conditional expressions associate
from right to left. In the following example, the conditional operator is used to get the minimum of x and y:

a = (x < y) ? x : y;     /* a = min(x, y)  */

There is a sequence point after the first expression (E1). The following example's result is predictable, and is not
subject to unplanned side effects:

i++ > j ? y[i] : x[i];

The conditional operator does not produce an lvalue. Therefore, a statement such as a ? x : y = 10 is not valid.
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The following restrictions apply:

• The first operand must have a scalar type.

• One of the following must hold for the second and third operands:

• Both operands have an arithmetic type (the usual arithmetic conversions are performed to bring the second
and third operands to a common type). The result has that type.

• Both operands have compatible structure or union types.

• Both operands have a type of void.

• Both operands are pointers to qualified or unqualified versions of compatible types. The result has the
composite type.

• One operand is a pointer and the other is a null pointer constant. The result has the type of the pointer that
is not a null pointer constant.

• One operand is a pointer to an object or incomplete type and the other is a pointer to a qualified or unqualified
version of void. The result has the type pointer to void.

6.7. Assignment Operators
       There are several assignment operators. Assignments result in the value of the target variable after the
assignment. They can be used as subexpressions in larger expressions. Assignment operators do not produce
lvalues.

Assignment expressions have two operands: a modifiable lvalue on the left and an expression on the right. A
simple assignment consists of the equal sign (=) between two operands:

E1 = E2;

The value of expression E2 is assigned to E1. The type is the type of E1, and the result is the value of E1 after
completion of the operation.

A compound assignment consists of two operands, one on either side of the equal sign (=), in combination with
another binary operator. For example:

E1 += E2;

This is equivalent to the following simple assignment (except that in the compound assignment E1 is evaluated
once, while in the simple assignment E1 is evaluated twice):

E1 = E1 + E2;

In the following example, the following assignments are equivalent:

a *= b + 1;

a = a * (b + 1);         

In another example, the following expression adds 100 to the contents of number[1]:

number[1] += 100;

The result of this expression is the result after the addition and has the same type as number[1].

If both assignment operands are arithmetic, the right operand is converted to the type of the left before the
assignment (see Section 6.11.1, “Usual Arithmetic Conversions”).
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The assignment operator (=) can be used to assign values to structures and unions. In the VAX C compatibility
mode of VSI C, one structure can be assigned to another as long as the structures are defined to be the same size, in
bytes. In ANSI mode, the structure values must also have the same type. With all compound assignment operators,
all right operands and all left operands must be either pointers or evaluate to arithmetic values. If the operator is -
= or +=, the left operand can be a pointer, and the right operand (which must be integral) is converted in the same
manner as the right operand in the binary plus (+) and minus (-) operations. 

Do not reverse the characters that comprise a compound assignment operator, as in the following example:

E1 =+ E2;

This is an obsolete form that is no longer supported, but it will pass through the compiler undetected. (It is
interpreted as an assignment operator followed by the unary plus operator). 

6.8. Comma Operator
When two or more expressions are separated by the comma operator, they evaluate from left to right. The result has
the type and value of the rightmost expression (although side effects of the other expressions, if any, do take place).
The result is not an lvalue. In the following example, the value 1 is assigned to R, and the value 2 is assigned to T:

R = T = 1,   T += 2,   T -= 1;

Side effects for each expression are completed before the next expression is evaluated.

A comma expression must be enclosed with parentheses if it appears where commas have some other meaning,
as in argument and initializing lists. Consider the following expression:

f(a, (t=3,t+2), c)

This example calls the function f with the arguments a, 5, and c. In addition, variable t is assigned the value 3.

6.9. Constant Expressions
A constant expression is an expression that contains only constants. A constant expression can be evaluated during
compilation rather than at run time, and can be used in any place that a constant can occur. In the following example,
limit+1 is a constant expression, and is evaluated at compile time:

#define limit 500
char x[limit+1]

A constant expression cannot contain assignment, increment, decrement, function-call, or comma operators, except
when they are within the operand of a sizeof operator. Each constant expression must evaluate to a constant
that is in the range of representable values for its type.

There are several contexts in which C requires an expression that must evaluate to a constant:

• The size of a bit field

• The value of an enumeration constant

• The size of an array (and the second and subsequent dimensions in all array declarations)

• The value of a case label

• An integral constant expression used in conditional-inclusion preprocessing directives

• The initializer list for an object with static storage duration

6.9.1. Integral Constant Expressions
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An integral constant expression has an integral type and contains only operands that are integer constants,
enumeration constants, character constants, sizeof expressions whose operand does not have variable-length
array type or a parenthesized name of such a type, or floating constants that are the immediate operands of casts.
Cast operands in an integral constant expression only convert arithmetic types to integral types, except as part of
an operand to the sizeof operator.

C allows more latitude for constant expressions in initializers. Such a constant expression can evaluate to one of
the following:

• An arithmetic constant expression

• A null pointer constant

• An address constant

• An address constant for an object type plus or minus an integral constant expression

6.9.2. Arithmetic Constant Expressions
An arithmetic constant expression has an arithmetic type and contains only operands that are integer constants,
floating constants, enumeration constants, character constants, or sizeof expressions whose operand does not
have variable-length array type or a parenthesized name of such a type. Cast operators in an arithmetic constant
expression only convert arithmetic types to arithmetic types, except as part of an operand to the sizeof operator.

6.9.3. Address Constants
An address constant is a pointer to an lvalue designating an object of static storage duration (see Section 2.10,
“Storage Classes”), or to a function designator. Address constants must be created explicitly by using the unary &
operator, or implicitly by using an expression of array or function type. The array subscript [] and member access
operators . and ->, the address & and indirection * unary operators, and pointer casts can be used to create an
address constant, but the value of an object cannot be accessed by use of these operators.

6.10. Compound Literal Expressions
A compound literal, also called a constructor expression, is a form of expression that constructs the value of an
object, including objects of array, struct, or union type.

In the C89 Standard, passing a struct value to a function typically involves declaring a named object of the
type, initializing its members, and passing that object to the function. With the C99 Standard, this can now be
done with a single compound literal expression. (Note that compound literal expressions are not supported in the
common C, VAX C, and Strict ANSI89 modes of the VSI C compiler.)

A compound literal is an unnamed object specified by a syntax consisting of a parenthesized type name (the same
syntax as a cast operator) followed by a brace-enclosed list of initializers. The value of this unnamed object is
given by the initializer list. The initializer list can use the designator syntax.

For example, to construct an array of 1000 ints that are all zero except for array element 9, which is to have a
value of 5, you can write the following:

(int [1000]){[9] = 5}. 

A compound literal object is an lvalue. The object it designates has static storage duration if it occurs outside all
function definitions. Otherwise, it has automatic storage duration associated with the nearest enclosing block.

Usage Notes

• The type name must specify an object type or an array of unknown size.
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• An initializer cannot provide a value for an object not contained within the entire unnamed object specified by
the compound literal.

• If the compound literal occurs outside the body of a function, the initializer list must consist of constant
expressions.

• If the type name specifies an array of unknown size, the size is determined by the initializer list as specified
in Section 4.7.1, “Initializing Arrays”, and the type of the compound literal is that of the completed array type.
Otherwise (when the type name specifies an object type), the type of the compound literal is that specified by
the type name. In either case, the result is an lvalue.

• All the semantic rules and constraints for initializer lists in Sections 4.2, 4.7.1, 4.8.4, 4.8.5, and 4.9 are applicable
to compound literals.

• String literals, and compound literals with const-qualified types, need not designate distinct objects. This allows
implementations to share storage for string literals and constant compound literals with the same or overlapping
representations.

The following examples illustrate the use of compound literals.

Examples
1. int *p = (int []){2, 4};

This example initializes p to point to the first element of an array of two ints, the first having the value 2
and the second having the value 4. The expressions in this compound literal are required to be constant. The
unnamed object has static storage duration.

2. void f(void)
{
        int *p;
        /*...*/
        p = (int [2]){*p};
        /*...*/
}

In this example, p is assigned the address of the first element of an array of two ints, the first having the value
previously pointed to by p and the second having the value zero. The expressions in this compound literal need
not be constant. The unnamed object has automatic storage duration.

3. drawline((struct point){.x=1, .y=1},
        (struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
        &(struct point){.x=3, .y=4});

Initializers with designations can be combined with compound literals. Structure objects created using
compound literals can be passed to functions without depending on member order.

4. (const float []){1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}

A read-only compound literal can be specified through constructions like the one in this example.

5. "/tmp/testfile"
(char []){"/tmp/testfile"}
(const char []){"/tmp/testfile"}
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The three expressions in this example have different meanings:

The first always has static storage duration and has type "array of char", but need not be modifiable.

The last two have automatic storage duration when they occur within the body of a function, and the first of
these two is modifiable.

6. (const char []){"abc"} == "abc"

Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. This example might yield 1 if the literal's storage is shared.

7. struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

Because compound literals are unnamed, a single compound literal cannot specify a circularly linked object.
In this example, there is no way to write a self-referential compound literal that could be used as the function
argument in place of the named object endless_zeros.

8. struct s { int i; };

int f (void)
{
        struct s *p = 0, *q;
        int j = 0;

        while (j < 2) 
                 q = p, p = &((struct s){ j++ });
        return p == q && q->i == 1;
}

As shown in this example, each compound literal creates only a single * object in a given scope.

The function f() always returns the value 1.

6.11. Data-Type Conversions
C performs data-type conversions in the following four situations:

• When two or more operands of different types appear in an expression.

• When arguments of type char, short, and float are passed to a function using the old style declaration.

• When arguments that do not conform exactly to the parameters declared in a function prototype are passed to
a function.

• When the data type of an operand is deliberately converted by the cast operator. See Section 6.4.6, “The Cast
Operator” for more information on the cast operator.

The following sections describe how operands and function arguments are converted.

6.11.1. Usual Arithmetic Conversions
The following rules—referred to as the usual arithmetic conversions—govern the conversion of all operands in
arithmetic expressions. The effect is to bring operands to a common type, which is also the type of the result. The
rules govern in the following order:

1. If either operand is not of arithmetic type, no conversion is performed.
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2. If either operand has type long double, the other operand is converted to long double.

3. Otherwise, if either operand has type double, the other operand is converted to double.

4. Otherwise, if either operand has type float, the other operand is converted to float.

5. For complex numbers ((Alpha, I64)), the above conversions take place for the corresponding real type of the
operand to be converted.

For example, adding a double _Complex and a float, converts just the float operand to double,
yielding a double _Complex result.

6. Otherwise, the integer promotions are performed on both operands, and the following rules apply: 

a. If both operands have the same type, then no further conversion is needed.

b. Otherwise, if both operands have signed integer types or both have unsigned integer types, the operand with
the type of lesser integer conversion rank is converted to the type of the operand with greater rank.

c. Otherwise, If either operand has type unsigned long long int, the other operand is converted to
unsigned long long int

d. If either operand has type unsigned long int, the other operand is converted to unsigned long
int.

e. Otherwise, if one operand has type long int and the other has type unsigned int, and if a long
int can represent all values of an unsigned int, the operand of type unsigned int is converted
to long int. If a long int cannot represent all the values of an unsigned int, both operands are
converted to unsigned long int.

f. Otherwise, if either operand has type long int, the other operand is converted to long int.

g. Otherwise, if either operand has type unsigned int, the other operand is converted to unsigned int.

h. Otherwise, both operands have type int.

The following sections elaborate on the usual arithmetic conversion rules.

6.11.1.1. Characters and Integers
A char, short int, or int bit field, either signed or unsigned, or an object that has enumeration type, can
be used in an expression wherever an int or unsigned int is permitted. If an int can represent all values
of the original type, the value is converted to an int. Otherwise, it is converted to an unsigned int. These
conversion rules are called the integer promotions.

This implementation of integer promotion is called value preserving, as opposed to unsigned preserving in which
unsigned char and unsigned short widen to unsigned int. VSI C uses value-preserving promotions,
as required by the ANSI C standard, unless the common C mode is specified.

To help locate arithmetic conversions that depend on unsigned preserving rules, VSI C, with the check option
enabled, flags any integer promotions of unsigned char and unsigned short to int that could be affected
by the value-preserving approach for integer promotions.

All other arithmetic types are unchanged by the integer promotions.

In VSI C, variables of type char are bytes treated as signed integers. When a longer integer is converted to a
shorter integer or to char, it is truncated on the left; excess bits are discarded. For example:

int i;
char c;
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i = 0xFFFFFF41;
c = i;

This code assigns hex 41 ('A') to c. The compiler converts shorter signed integers to longer ones by sign
extension.

6.11.1.2. Signed and Unsigned Integers
Conversions also take place between the various kinds of integers.

When a value with an integral type is converted to another integral type (such as int converted to long int)
and the value can be represented by the new type, the value is unchanged.

When a signed integer is converted to an unsigned integer of equal or greater size, and the signed integer value is
nonnegative, its value is unchanged. If the signed integer value is negative, then:

• If the unsigned integer type is larger, the signed integer is first promoted to the signed integer that corresponds to
the unsigned integer; then the value is converted to unsigned by adding to it one greater than the largest number
that can be represented in the unsigned integer type.

• If the unsigned integer type is equal or smaller than the signed integer type, then the value is converted to
unsigned by adding to it one greater than the largest number that can be represented in the unsigned integer type.

When an integer value is demoted to an unsigned integer of smaller size, the result is the nonnegative remainder of
the value divided by the number one greater than the largest representable unsigned value for the new integral type.

When an integer value is demoted to a signed integer of smaller size, or an unsigned integer is converted to its
corresponding signed integer, the value is unchanged if it is small enough to be represented by the new type.
Otherwise, the result is truncated; excess high-order bits are discarded and precision is lost.

Conversion between integral types of the same size, whether signed or unsigned, results in no machine-level
representation change.

6.11.1.3. Floating and Integral
When a floating-type operand is converted to an integer, the fractional part is discarded.

When a floating-type value is to be converted at compile time to an integer or another floating type, and the result
cannot be represented, the compiler reports a warning in the following instances:

• The conversion is to unsigned int and the result cannot be represented by the unsigned int type.

• The conversion is to a type other than unsigned int, and the result cannot be represented by the int type.

When a value of integral type is converted to floating type, and the value is in the range of values that can be
represented, but not exactly, the result of the conversion is either the next higher or next lower value, whichever
is the natural result of the conversion on the hardware. See your VSI C documentation for the conversion result
on your platform.

6.11.1.4. Floating Types
If an operand of type float appears in an expression, it is treated as a single-precision object unless the expression
also involves an object of type double or long double, in which case the usual arithmetic conversion applies.

When a float is promoted to double or long double, or a double is promoted to long double, its
value is unchanged.

The behavior is undefined when a double is demoted to float, or a long double to double or float,
if the value being converted is outside the range of values that can be represented.

127



Expressions and Operators

If the value being converted is inside the range of values that can be represented, but not exactly, the result is
rounded to either the next higher or next lower representable float value.

6.11.2. Pointer Conversions
Although two types (for example, int and long) can have the same representation, they are still different types.
This means that a pointer to int cannot be assigned to a pointer to long without using a cast. Nor can a pointer
to a function of one type be assigned to a pointer to a function of a different type without using a cast. In addition,
pointers to functions that have different parameter-type information, including the old-style absence of parameter-
type information, are different types. In these instances, if a cast is not used, the compiler issues an error. Because
there are alignment restrictions on some target processors, access through an unaligned pointer can result in a
much slower access time or a machine exception.

A pointer to void can be converted to or from a pointer to any incomplete or object type. If a pointer to any
incomplete or object type is converted to a pointer to void and back, the result compares equal to the original
pointer.

An integral constant expression equal to 0, or such an expression cast to the void * type, is called a null pointer
constant. If a null pointer constant is assigned to or compared for equality with a pointer, the constant is converted
to a pointer of that type. Such a pointer is called a null pointer, and is guaranteed to compare unequal to a pointer
to any object or function.

An array designator is automatically converted to a pointer to the array type, and the pointer points to the first
element of the array.

6.11.3. Function Argument Conversions
The data types of function arguments are assumed to match the types of the formal parameters unless a function
prototype declaration is present. In the presence of a function prototype, all arguments in the function invocation
are compared for assignment compatibility to all parameters declared in the function prototype declaration. If
the type of the argument does not match the type of the parameter but is assignment compatible, C converts the
argument to the type of the parameter (see Section 6.11.1, “Usual Arithmetic Conversions”). If an argument in the
function invocation is not assignment compatible to a parameter declared in the function prototype declaration,
an error message is generated.

If a function prototype is not present, all arguments of type float are converted to double, all arguments of type
char or short are converted to type int, all arguments of type unsigned char and unsigned short
are converted to unsigned int, and an array or function name is converted to the address of the named array or
function. The compiler performs no other conversions automatically, and any mismatches after these conversions
are programming errors.

A function designator is an expression that has function type. Except when it is the operand of the sizeof operator
or the unary & operator, a function designator with type "function returning type" is converted to an expression
that has type "pointer to function returning type."
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Chapter 7. Statements
This section describes the following kinds of statements in the C programming language. Except as indicated in
this chapter, statements are executed in the sequence in which they appear in a function body:

• Labeled statements (Section 7.1, “Labeled Statements”)

• Compound statements (Section 7.2, “Compound Statements”)

• Expression statements (Section 7.3, “Expression Statements”)

• Null statements (Section 7.4, “Null Statements”)

• Selection statements (Section 7.5, “Selection Statements”)

• Iteration statements (Section 7.6, “Iteration Statements”)

• Jump statements (Section 7.7, “Jump Statements”)

7.1. Labeled Statements
A label is an identifier used to flag a location in a program as the target of a goto statement or switch statement.
A label has the following syntax:

identifier : statement

case constant-expression : statement
default : statement

The scope of the label is the containing function body. Variables can have the same name as a label in the function
because labels and variables have different name spaces (see Section 2.15, “Name Spaces”).

There are three kinds of labeled statements in C:

• Any statement preceded by a label

• A case statement

• A default statement

The last two statements are discussed in Section 7.5.2, “The switch Statement” because they can appear only
within a switch statement.

7.2. Compound Statements
A compound statement, or block, allows a sequence of statements to be treated as a single statement. A compound
statement begins with a left brace, contains any mix of declarations and statements, and ends with a right brace,
as shown in the following example:

 {
    int a;
    a = 1;
    int b;
    b = 2;
 }
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Note

The ability to mix declarations and statements in any sequence in a compound statement is not allowed in common
C, VAX C, and Strict ANSI89 modes. In these modes, the declarations must be specified first, followed by the
statements.
   

Block declarations are local to the block, and, for the rest of the block, they supersede other declarations of the
same name in outer scopes.

A block is entered normally when control flows into it, or when a goto statement transfers control to a label at the
beginning of the block itself. Each time the block is entered normally, storage is allocated for auto or register
variables. If, on the other hand, a goto statement transfers control to a label inside the block or if the block is the
body of a switch statement, these storage allocations do not occur. For more information about storage classes,
see Section 2.10, “Storage Classes”.

Function definitions contain compound statements. The compound statement following the parameter declarations
in a function definition is called the function body.

7.3. Expression Statements
Any valid expression can be used as a statement by following the expression with a semicolon, as shown in the
following example:

i++;

This statement increments the value of the variable i. Note that i++ is a valid C expression that can appear in more
complex C statements. For more information about the C expressions, see Chapter 6, Expressions and Operators.

7.4. Null Statements
A null statement is used to provide a null operation in situations where the grammar of the language requires a
statement, but the program requires no work to be done. The null statement consists of a semicolon:

;

The null statement is useful with the if, while, do, and for statements. The most common use of this statement
is in loop operations in which all the loop activity is performed by the test portion of the loop. For example, the
following statement finds the first element of an array that has a value of 0:

for (i=0; array[i] != 0; i++)
   ;

In this example, the for statement is executed for its side effects only; the loop body is a null statement. See
Section 7.6, “Iteration Statements” for more information about iteration statements.

The null statement is also useful where a label is needed just before a brace that terminates a compound statement.
(A label cannot immediately precede the right brace; it must always be attached to a statement.) For example:

if (expression1) 
{
  ...

  goto label_1;  /* Terminates this part of the if statement */
  ...

label_1: ;
}
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else ...

7.5. Selection Statements
A selection statement selects among a set of statements depending on the value of a controlling expression. The
selection statements are the if statement and the switch statement, which are discussed in the following sections.

7.5.1. The if Statement
The if statement has the following syntax:

if ( expression )
   statement
elseopt
   else-statementopt

The statement following the control expression is executed if the value of the control expression is true (nonzero).
An if statement can be written with an optional else clause that is executed if the control expression is false (0).

Consider the following example:

if (i < 1)
   funct(i);
else
   {
   i = x++;
   funct(i);
   }

In this example, if the value of i is less than 1, then the statement funct(i) is executed and the compound
statement following the keyword else is not executed. If the value of i is not less than 1, then only the compound
statement following the keyword else is executed.    

The control expression in a selection statement is usually a logical expression, but it can be any expression of
scalar type.

When if statements are nested, an else clause matches the most recent if statement that does not have an else
clause, and is in the same block. For example:

if (i < 1)
    {
    if (j < 1)
        funct(j);
    if (k < 1)            /* This if statement is associated with */
        funct(k);
    else                  /* this else clause.                    */
        funct(j + k);
    }

7.5.2. The switch Statement
The switch statement executes one or more of a series of cases, based on the value of a controlling expression.
The switch statement has the following syntax:

switch ( expression )
   statement

The usual arithmetic conversions are performed on the control expression, but the result must have an integral
type. For more information about data-type conversion, see Section 6.11, “Data-Type Conversions”. The switch
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statement is typically a compound statement, within which are one or more case statements executed if the control
expression matches the case. The syntax for a case label and expression follows:     

case constant-expression : statement

The constant expression must have an integral type. No two case labels can specify the same value. There is no
limit on the number of case labels in a switch statement.   

Only one statement in the compound statement can have the following label:

default :

The case and default labels can occur in any order, but it is common practice for the default statement
to follow the case statements. Note that execution flows from the selected case into the cases following unless
explicit action is taken, such as a break statement. 

When the switch statement is executed, the following sequence takes place:

1. The switch control expression is evaluated (and integral promotions applied) and compared with the constant
expressions in the case labels.

2. If the control expression's value matches a case label, control transfers to the statement following that label.
If a break statement is encountered, the switch statement terminates; otherwise, execution continues into
the following case or default statements until a break statement or the end of the switch statement is
encountered (see Example 7.1, “Using switch to Count Blanks, Tabs, and New Lines”).

A switch statement can also be terminated by a return or goto statement. If a switch statement is inside
a loop, the switch statement is terminated if a continue statement terminates the loop. See Section 7.7,
“Jump Statements” for more information about these statements.

3. If the control expression's value does not match any case label, and there is a default label, control is
transferred to the statement following that label. If a break statement does not end the default statement,
and a case label follows, that case statement is executed.

4. If the control expression's value does not match any case label and there is no default label, execution of
the switch statement terminates.

Example 7.1, “Using switch to Count Blanks, Tabs, and New Lines” uses the switch statement to count blanks,
tabs, and new-line characters entered from the terminal.

Example 7.1. Using switch to Count Blanks, Tabs, and New Lines

/*  This program counts blanks, tabs, and new lines in text *
 *  entered from the keyboard.                              */

#include <stdio.h>
main()
{
   int number_tabs = 0, number_lines = 0, number_blanks = 0;
   int ch;
   while ((ch = getchar()) != EOF)
      switch (ch)
         {
            case '\t':  ++number_tabs;
                        break;

            case '\n':  ++number_lines;
                        break;
            case ' ' :  ++number_blanks;
                        break;
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            default:;
         }
   printf("Blanks\tTabs\tNewlines\n");
   printf("%6d\t%6d\t%6d\n", number_blanks,
                             number_tabs,number_lines);
}

Key to Example 7.1, “Using switch to Count Blanks, Tabs, and New Lines”:

A series of case statements is used to increment separate counters depending on the character encountered.
The break statement causes control to return to the while loop. Control is passed to the while loop if
the value of ch does not match any of the case constant expressions.

Without the break statements, each case would drop through to the next.

 If variable declarations appear in the compound statement within a switch statement, initializers on auto
or register declarations are ineffective. However, initializations within the statements following a case are
effective. Consider the following example:

switch (ch)
   {
      int nx = 1;          /* Initialization ignored            */
      printf("%d", n);     /* This first printf is not executed */
      case 'a' :
       { int n = 5;        /* Proper initialization occurs      */
         printf("%d", n);
         break; }
      case 'b' :
         { break; }
      default :
         { break; }
   }

In this example, if ch == ’a’, then the program prints the value 5. If the variable equals any other letter, the
program prints nothing because the initialization occurs outside of the case label, and statements outside of the
case label are ineffective.    

7.6. Iteration Statements
An iteration statement, or loop, repeatedly executes a statement, known as the loop body, until the controlling
expression is false (0). The control expression must have a scalar type.

The while statement evaluates the control expression before executing the loop body (see Section 7.6.1, “The
while Statement”).

The do statement evaluates the control expression after executing the loop body; at least one execution of the loop
body is guaranteed (see Section 7.6.2, “The do Statement”).

The for statement executes the loop body based on the evaluation of the second of three expressions (see
Section 7.6.3, “The for Statement”).

7.6.1. The while Statement
The while statement evaluates a control expression before each execution of the loop body. If the control
expression is true (nonzero), the loop body is executed. If the control expression is false (0), the while statement
terminates. The while statement has the following syntax:

while ( expression )
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   statement

Consider the following while statement:

n = 0;
while (n < 10)
   {
      a[n] = n;
      n++;
   }

This statement tests the value of n; if n is less than 10, it assigns n to the nth element of the array a and then
increments n. The control expression (in parentheses) is then evaluated; if true (nonzero), the loop body is executed
again; if false (0), the while statement terminates. If the statement n++ were missing from the loop body, this
while statement would never terminate. If the statement n = 0 were replaced by the statement n = 10, the
control expression is initially false (0), and the loop body is never executed.

7.6.2. The do Statement
The do statement evaluates the control expression after each execution of the loop body. The do statement has
the following syntax:

do
   statement
   while ( expression ) ;

The loop body is executed at least once. The control expression is evaluated after each execution of the loop body.
If the control expression is true (nonzero), the statement is executed again. If the control expression is false (0),
the do statement terminates.

7.6.3. The for Statement
The for statement evaluates three expressions and executes the loop body until the second controlling expression
evaluates to false (0). The for statement is useful for executing a loop body a specified number of times. The
for statement has the following syntax:

for ( expression-1opt ;
   expression-2opt ; expression-3opt) 
   statement

The for statement is equivalent to the following code:

expression-1
while ( expression-2 )
   {
   statement
   expression-3 ;
   }

The for statement executes the loop body zero or more times. Semicolons (;) are used to separate the control
expressions. A for statement executes the following steps:

1. expression-1 is evaluated once before the first iteration of the loop. This expression usually specifies the initial
values for variables used in the loop.

2. expression-2 is any scalar expression that determines whether to terminate the loop. expression-2 is evaluated
before each loop iteration. If the expression is true (nonzero), the loop body is executed. If the expression is
false (0), execution of the for statement terminates.

3. expression-3 is evaluated after each iteration.
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4. The for statement executes until expression-2 is false (0), or until a jump statement, such as break or goto,
terminates execution of the loop.

Any of the three expressions in a for loop can be omitted:

• If expression-2 is omitted, the test condition is always true; that is, the while loop equivalent becomes
while(1). This is an infinite loop. For example:

for (i = 0;  ;i++)
    statement;

Infinite loops can be terminated with a break, return, or goto statement within the loop body.

• If either expression-1 or expression-3 is omitted from the for statement, the omitted expression is evaluated as
a void expression and is effectively dropped from the expansion. For example:

n = 1;
for ( ; n < 10; n++)
   func(n);

In this example, n is initialized before the for statement is executed.

In relaxed ANSI C mode, the first clause of the for statement can be a declaration whose scope includes the
remaining clauses of the for header and the entire loop body. This is normally used to declare and initialize a
local loop control variable. For example:

for (int i=0; i<10; i++) 
    printf("%d\n", i); 

 

7.7. Jump Statements
Jump statements cause an unconditional jump to another statement elsewhere in the code. They are used primarily
to interrupt switch statements and loops.

The jump statements are the goto statement, the continue statement, the break statement, and the return
statement, which are discussed in the following sections.

7.7.1. The goto Statement
The goto statement unconditionally transfers program control to a labeled statement, where the label identifier is
in the scope of the function containing the goto statement. The labeled statement is the next statement executed.
The goto statement has the following syntax:

goto identifier;

Care must be taken when branching into a block by using the goto statement, because storage is allocated for
automatic variables declared within a block when the block is activated. When a goto statement branches into a
block, automatic variables declared in the block are not initialized.

7.7.2. The continue Statement
The continue statement passes control to the end of the immediately enclosing while, do, or for statement.
The continue statement has the following syntax:

continue;

The continue statement is equivalent to a goto statement within an iteration statement that passes control to
the end of the loop body. For example, the following two loops are equivalent:
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while(1)                           while(1)
{                                  {
   .                                  .
   .                                  .
   .                                  .
  goto label_1;                     continue;
   .                                  .
   .                                  .
   .                                  .
  label_1:                        
   ;                                  ;
 }                                  }

The continue statement can be used only in loops. A continue inside a switch statement that is inside a
loop causes continued execution of the enclosing loop after exiting from the body of the switch statement.

7.7.3. The break Statement
The break statement terminates execution of the immediately enclosing while, do, for, or switch statement.
Control passes to the statement following the loop body (or the compound statement of a switch statement). The
break statement has the following syntax:

break;

See Example 7.1, “Using switch to Count Blanks, Tabs, and New Lines” which uses a break statement within
a switch statement.

7.7.4. The return Statement
The return statement terminates execution of a function and returns control to the calling function, with or
without a return value. A function may contain any number of return statements. The return statement has
the following syntax:

return expressionopt;

If present, the expression is evaluated and its value is returned to the calling function. If necessary, its value is
converted to the declared type of the containing function's return value.

A return statement with an expression cannot appear in a function whose return type is void. For more
information about the void data type and function return types, see Sections 3.5 and 3.4.1.

If there is no expression and the function is not defined as void, the return value is undefined. For example, the
following main function returns an unpredictable value to the operating system:

main ( )
  {
   return;
  }

 

Reaching the closing brace that terminates a function is equivalent to executing a return statement without an
expression.
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Chapter 8. Preprocessor Directives
and Predefined Macros
The C preprocessor provides the ability to perform macro substitution, conditional compilation, and inclusion of
named files. Preprocessor directives, lines beginning with # and possibly preceded by white space, are used to
communicate with the preprocessor.

The following sections describe the preprocessor directives and operators available with the VSI C compiler:

• The #define and #undef directives, and the # and ## operators (Section 8.1, “Macro Definition (#define
and #undef)”)

• The #if, #ifdef, #ifndef, #else, #elif, and #endif directives, and the defined operator
(Section 8.2, “Conditional Compilation (#if, #ifdef, #ifndef, #else, #elif, #endif, and
defined)”)

• The #include directive (Section 8.3, “File Inclusion (#include)”)

• The #line directive (Section 8.4, “Explicit Line Numbering (#line)”)

• The #pragma directive (Section 8.5, “Implementation-Specific Preprocessor Directive (#pragma)”)

• The #error directive (Section 8.6, “Error Directive (#error)”)

• The null directive (#) (Section 8.7, “Null Directive (#)”)

Preprocessor directives are independent of the usual scope rules; they remain in effect from their occurrence until
the end of the compilation unit or until their effect is canceled.

See Section 8.2, “Conditional Compilation (#if, #ifdef, #ifndef, #else, #elif, #endif, and
defined)” for more information about conditional compilation. See your platform-specific VSI C documentation
for implementation-defined information about preprocessor directives.

The ANSI standard allows only comments as text following a preprocessing directive. The VSI C compiler issues
a warning if this syntax rule is violated in all modes but the strict ANSI mode, in which it issues an error message.

8.1. Macro Definition (#define and #undef)
The #define directive specifies a macro identifier and a replacement list, and terminates with a new-line
character. The replacement list, a sequence of preprocessing tokens, is substituted for every subsequent occurrence
of that macro identifier in the program text, unless the identifier occurs inside a character constant, a comment, or
a literal string. The #undef directive is used to cancel a definition for a macro.

A macro definition is independent of block structure, and is in effect from the #define directive that defines it
until either a corresponding #undef directive or the end of the compilation unit is encountered.

The #define directive has the following syntax:

#define identifier replacement-list newline

#define identifier ( identifier-listopt ) 
replacement-list newline

#define identifier ( … ) replacement-list newline

#define identifier ( identifier-list, …   
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replacement-list newline

If the replacement-list is empty, subsequent occurrences of the identifier are deleted from the source file.

The first form of the #define directive is called an object-like macro. The last three forms are called function-
like macros.

The #undef directive has the following syntax:

#undef identifier newline

This directive cancels a previous definition of the identifier by #define. Redefining a macro previously defined
is not legal, unless the new definition is precisely the same as the old.

The replacement list in the macro definition, as well as arguments in a function-like macro reference, can contain
other macro references. VSI C does not limit the depth to which such references can be nested.

For a given macro definition, any macro names contained in the replacement list are themselves replaced by their
currently specified replacement lists. If a macro name being defined is contained in its own replacement list or in a
nested replacement list, it is not replaced. These nonreplaced macro names are then no longer available for further
replacement, even if they are later examined in contexts in which they would otherwise be replaced.

The following example shows nested #define directives:

/*  Show multiple substitutions and listing format. */

#define  AUTHOR  james + LAST

main()
{
   int writer,james,michener,joyce;

   #define LAST michener
   writer = AUTHOR;
   #undef LAST
   #define LAST joyce
   writer = AUTHOR;
}

After this example is compiled with the appropriate options to show intermediate macro expansions, the following
listing results:

    1            /* Show multiple substitutions and listing format. */
    2
    3            #define AUTHOR james + LAST
    4            
    5            main()
    6            {
    7              int writer, james, michener, joyce;
    8            
    9              #define LAST michener
   10              writer = AUTHOR;
   10.1                     james + LAST
   10.2                     michener
   11              #undef LAST
   12              #define LAST joyce
   13              writer = AUTHOR;
   13.1                     james + LAST
   13.2                     joyce
   14            }
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On the first pass, the compiler replaces the identifier AUTHOR with the replacement list james + LAST. On the
second pass, the compiler replaces the identifier LAST with its currently defined replacement list value. At line 9,
the replacement list value for LAST is the identifier michener, so michener is substituted at line 10. At line
12, the replacement list value for LAST is redefined to be the identifier joyce, so joyce is substituted at line 13.

The #define directive may be continued onto subsequent lines if necessary. To do this, end each line to
be continued with a backslash (\) immediately followed by a new-line character. The backslash and new-line
characters do not become part of the definition. The first character in the next line is logically adjacent to the
character that immediately precedes the backslash. The backslash/newline as a continuation sequence is valid
anywhere. However, comments within the definition line can be continued without the backslash/newline.

If you plan to port programs to and from other C implementations, take care in choosing which macro definitions
to use within your programs, because some implementations define different macros than others.

8.1.1. Object-Like Form
A preprocessing directive of the following form defines an object-like macro that causes each subsequent
occurrence of the macro name to be replaced by the replacement list:

#define identifier replacement-list newline

An object like macro may be redefined by another #define directive provided that the second definition is an
object-like macro definition and the two replacement lists are identical. This means that two files, each with a
definition of a certain macro, must be consistent in that definition.

The object-like form of macro definition defines a descriptive name for a frequently used token. A common use
of the directive is to define the end-of-file (EOF) indicator as follows:

#define  EOF  (-1)

8.1.2. Function-Like Form
The function-like form of macro definition includes a list of parameters. References to such macros look like
function calls. When a function is called, control passes from the program to the function at run time; when a
macro is referenced, source code is inserted into the program at compile time. The parameters are replaced by the
corresponding arguments, and the text is inserted into the program stream.

If there is a ... in the identifier-list in the macro definition, then the trailing arguments, including any separating
comma preprocessing tokens, are merged to form a single item: the variable arguments. The number of arguments
so combined is such that, following the merger, the number of arguments is one more than the number of parameters
in the macro definition (excluding the ...).

An identifier __VA_ARGS__ that occurs in the replacement-list of a function-like macro that uses ellipsis notation
in the arguments is treated as if it were a parameter, and the variable arguments form the preprocessing tokens
used to replace it.

If the replacement list is omitted from the macro definition, the entire macro reference disappears from the source
text.

The library macro _toupper, available on some systems in the ctype.h header file, is a good example of
macro replacement. This macro is defined as follows:

#define  _toupper(c)  ((c) >= 'a'  &&  (c) <= 'z'  ? (c) & 0X5F : (c))

When the macro _toupper is referenced, the compiler replaces the macro and its parameter with the replacement
list from the directive, substituting the argument of the macro reference for each occurrence of the parameter (c
in this case) in the replacement list.

The replacement list of C source code can be translated in the following manner: if parameter c is a lowercase letter
(between 'a' and 'z'), the expression evaluates to an uppercase letter (c & 0X5F); otherwise, it evaluates to the
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character as specified. This replacement list uses the if-then-else conditional operator (?:). For more information
about the conditional operator, see Section 6.6, “Conditional Operator”. For more information about the bitwise
operators, see Section 6.5.6, “Bitwise Operators”.

8.1.2.1. Rules for Specifying Macro Definitions
Preprocessor directives and macro references have syntax that is independent of the C language. Follow these
rules when specifying macro definitions:

• The macro name and the formal parameters are identifiers and are specified according to the rules for identifiers
in the C language.

Spaces, tabs, and comments are replaced by a single space.

• White space cannot appear between the name and the left parenthesis that introduces the parameter list. White
space may appear inside the replacement list. Also, at least one space, tab, or comment must separate name
from define.

• The identifier __VA_ARGS__ can occur only in the replacement-list of a function-like macro that uses the
ellipsis notation in the arguments.

8.1.2.2. Rules for Specifying Macro References
Follow these rules when specifying macro references:

• Comments and white-space characters (spaces, horizontal and vertical tabs, new-line characters, and form feeds)
may be used freely within a macro reference anywhere that the delta symbol (Δ) appears in the following
example:

• Arguments consist of arbitrary text. Syntactically, they are not restricted to C expressions. They may contain
embedded comments and white space. Comments are replaced with a single space. White space (except for
leading and trailing white space) is preserved during the substitution.

• The number of arguments in the reference must match the number of parameters in the macro definition. Null
arguments result in undefined behavior.

• Commas separate arguments except where the commas occur inside string or character constants, comments,
or pairs of parentheses. Parentheses must be balanced within arguments.

8.1.2.3. Side Effects in Macro Arguments
It is not good programming practice to specify macro arguments that use the increment (++), decrement (–), and
assignment operators (such as +=) or other arguments that can cause side effects. For example, do not pass the
following argument to the _toupper macro: _toupper(p++).

When the argument p++ is substituted in the macro definition, the effect within the program stream is as follows:

((p++) >= 'a' && (p++) <= 'z' ? (p++) & 0X5F : (p++))

Because p is being incremented, it does not have the same value for each occurrence in this macro replacement.
Even if you are aware of possible side effects, the replacement lists within macro definitions can be changed,
which changes the side effects without warning.

8.1.3. Conversions to String Literals (#)
The # preprocessor operator is used to convert the argument that follows it to a string literal. The preprocessor
operator # can be used only in a function-like macro definition. For example:

#include <stdio.h>
#define PR(id) printf("The value of " #id " is %d\n", id)
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main()
{
  int i = 10;
  PR(i);
}

The output produced is:

The value of i is 10

The macro call expands in the following steps:

/*1*/  printf("The value of " #id " is %d\n", id)
/*2*/  printf("The value of " "i" " is %d\n", 10)
/*3*/  printf("The value of i is %d\n", 10)

The unary # operator produces a string from its operand. This example also uses the fact that adjacent string literals
are concatenated. If the operand to # contains double quotes or escape sequences, they are also expanded. For
example:

#include <stdio.h>
#define M(arg) printf(#arg " is %s\n", arg)
main()
{
  M("a\nb\tc");
}

The macro call expands using the following steps:

/*1*/  printf(#arg " is %s\n", arg)
/*2*/  printf("\"a\\nb\\tc\"" " is %s\n", "a\nb\tc");
/*3*/  printf("\"a\\nb\\tc\" is %s\n", "a\nb\tc");

8.1.4. Token Concatenation(##)
The ## preprocessor operator is used to concatenate two tokens into a third valid token, as in the following
example:

#define glue(a,b) a ## b
main()
{
int wholenum = 5000;
printf("%d", glue(whole,num));
}

The preprocessor converts the line printf("%d", glue(whole,num)); into printf("%d",
wholenum);, and when executed, the program prints 5000. If the result is not a valid token, an error occurs
when the tokens are concatenated.

In VSI C, the ## operator is evaluated before any # operators on the line. ## and # operators group left-to-right.

8.2. Conditional Compilation (#if, #ifdef,
#ifndef, #else, #elif, #endif, and
defined)
Six directives are available to control conditional compilation. They delimit blocks of program text that are
compiled only if a specified condition is true. These directives can be nested. The program text within the blocks

141



Preprocessor Directives
and Predefined Macros

is arbitrary and may consist of preprocessor directives, C statements, and so on. The beginning of the block of
program text is marked by one of three directives:

• #if

• #ifdef

• #ifdef

Optionally, an alternative block of text can be set aside with one of two directives:

• #else

• #elif

The end of the block or alternative block is marked by the #endif directive.

If the condition checked by #if, #ifdef, or #ifdef is true (nonzero), then all lines between the matching
#else (or #elif) and an #endif directive, if present, are ignored.

If the condition is false (0), then the lines between the #if, #ifdef, or #ifdef and an #else, #elif, or
#endif directive are ignored.

8.2.1. The #if Directive
The #if directive has the following syntax:

#if constant-expression newline

This directive checks whether the constant-expression is true (nonzero). The operand must be a constant integer
expression that does not contain any increment (++), decrement (–), sizeof, pointer (*), address (&), and cast
operators.

Identifiers in the constant expression either are or are not macro names. There are no keywords, enumeration
constants, and so on. The constant expression can also include the defined preprocessing operator (see
Section 8.2.7, “The defined Operator”).

The constant expression in an #if directive is subject to text replacement and can contain references to identifiers
defined in previous #define directives. The replacement occurs before the expression is evaluated. Each
preprocessing token that remains after all macro replacements have occurred is in the lexical form of a token.

If an identifier used in the expression is not currently defined, the compiler treats the identifier as though it were
the constant zero.

8.2.2. The #ifdef Directive
The #ifdef directive has the following syntax:

#ifdef identifier newline

This directive checks whether the identifier is currently defined. Identifiers can be defined by a #define directive
or on the command line. If such identifiers have not been subsequently undefined, they are considered currently
defined.

8.2.3. The #ifndef Directive
The #ifndef directive has the following syntax:

#ifndef identifier newline
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This directive checks to see if the identifier is not currently defined.

8.2.4. The #else Directive
The #else directive has the following syntax:

#else newline

This directive delimits alternative source text to be compiled if the condition tested for in the corresponding #if,
#ifdef, or #ifdef directive is false. An #else directive is optional.

8.2.5. The #elif Directive
The #elif directive has the following syntax:

#elif constant-expression newline

The #elif directive performs a task similar to the combined use of the else-if statements in C. This directive
delimits alternative source lines to be compiled if the constant expression in the corresponding #if, #ifdef,
#ifdef, or another #elif directive is false and if the additional constant expression presented in the #elif
line is true. An #elif directive is optional.

8.2.6. The #endif Directive
The #endif directive has the following syntax:

#endif newline

This directive ends the scope of the #if, #ifdef, #ifdef, #else, or #elif directive.

The number of necessary #endif directives changes according to whether the elif or #else directive is used.
Consider the following equivalent examples:

#if true                             #if true
.                                    .
.                                    .
.                                    .
#elif true                           .
.                                    #else
.                                    #if false
.                                    .
#endif                               .
                                     .
                                     #endif
                                     #endif

8.2.7. The defined Operator
Another way to verify that a macro is defined is to use the defined unary operator. The defined operator has
one of the following forms:

defined name

defined (name)

An expression of this form evaluates to 1 if name is defined and to 0 if it is not.

143



Preprocessor Directives
and Predefined Macros

The defined operator is especially useful for checking many macros with just a single use of the #if directive.
In this way, you can check for macro definitions in one concise line without having to use many #ifdef or
#ifdef directives.

For example, consider the following macro checks:

#ifdef  macro1
printf( "Hello!\n" );
#endif
#ifndef  macro2
printf( "Hello!\n" );
#endif
#ifdef  macro3
printf( "Hello!\n" );
#endif

Another use of the defined operator is in a single #if directive to perform similar macro checks:

#if  defined (macro1)  || !defined (macro2) || defined (macro3)
printf( "Hello!\n" );
#endif

Note that defined operators can be combined in any logical expression using the C logical operators. However,
defined can only be used in the evaluated expression of an #if or #elif preprocessor directive.

8.3. File Inclusion (#include)
The #include directive inserts the contents of a specified file into the text stream delivered to the compiler.
Usually, standard headers and global definitions are included in the program stream with the #include directive.
This directive has two forms:

#include "filename" newline

#include <filename> newline

The format of filename is platform-dependent. If the filename is enclosed in quotation marks, the search for the
named file begins in the directory where the file containing the #include directive resides. If the file is not
found there, or if the file name is enclosed in angle brackets (< >), the file search follows platform-defined search
rules. In general, the quoted form of #include is used to include files written by users, while the bracketed form
is used to include standard library files.

See your platform-specific VSI C documentation for information on the search path rules used for file inclusion.

Macro substitution is allowed within the #include preprocessor directive.

For example, the following two directives can be used to include a file:

#define  macro1  "file.ext" 
#include macro1

Defined macros used in #include directives must evaluate to one of the two following acceptable #include
file specifications or an error is reported:

"filename"

<filename>

An included file may itself contain #include directives. Although the VSI C compiler imposes no inherent
limitation on the nesting level of inclusion, the permitted depth depends on hardware and operating system
restrictions.
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8.4. Explicit Line Numbering (#line)
The compiler keeps track of information about line numbers in each file involved in the compilation, and uses the
line number when issuing diagnostic messages to the terminal or, when compiling in batch mode, to a log file.

The #line directive can be used to alter the line numbers assigned to source code. This directive gives a new
line number to the following line, which is then incremented to derive the line number for subsequent lines. The
directive can also specify a new file specification for the program source file. The #line directive does not
change the line numbers in your compilation listing, only the line numbers given in diagnostic messages sent to
the terminal screen or log file. This directive is useful for referring to original source files that are preprocessed
into C code.

The #line directive has three forms:

#line integer-constant newline

#line integer-constant "filename" newline 

#line pp-tokens newline

In the first two forms, the compiler gives the line following a #line directive the number specified by the integer
constant. The optional filename in quotation marks indicates the name of the source file that the compiler will
provide in its diagnostic messages. If the file name is omitted, the file name used is the name of the current source
file or the last file name specified in a previous #line directive.

In the third form, macros in the #line directive are expanded before it is interpreted. This allows a macro call to
expand into the integer-constant, filename, or both. The resulting #line directive must match one of the other
two forms, and is then processed as appropriate.

8.5. Implementation-Specific Preprocessor
Directive (#pragma)
The #pragma directive is a standard method for implementing platform-dependent features. This directive has
the following syntax:

#pragma pp-tokensopt newline 

The supported pragmas vary across platforms. All unrecognized pragmas are diagnosed with an informational
message. See your platform-specific VSI C documentation for a list of supported pragmas.

Some pragma directives are subject to macro expansion. They are:

builtins            inline                 linkage       standard
dictionary          noinline               module        nostandard
extern_model        member_alignment       message       use_linkage
extern_prefix       nomember_alignment

The following pragmas are also subject to macro expansion, primarily for use in preprocess-only mode (that is,
with the /PREPROCESS_ONLY qualifier on OpenVMS systems or the -E switch on Tru64 UNIX systems), and
are not normally used when generating an object module with the VSI C compiler:

• _KAP – Relevant only to the KAPC product.

• define_template – Relevant only to VSI C++.

• code_psect

• linkage_psect
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Note

An _nm suffix can be appended to any of the above-listed macros to prevent macro expansion. For example, to
prevent macro expansion on #pragma inline, specify it as #pragma inline_nm.

Also, to provide macro-expansion support to those pragmas not listed above, all pragmas (including those that
are already specified as undergoing macro expansion) have a pragma-name_m version, which makes the pragma
subject to macro expansion. For example, #pragma assert is not subject to macro expansion, but #pragma
assert_m is.

A macro reference can occur anywhere after the keyword pragma. For example:

#define opt inline
#define f func
#pragma opt(f)

After both macros are expanded, the #pragma directive becomes #pragma inline (func).

Note

Macro expansion is a feature of pragmas introduced in early versions of DEC C and is retained for backward
compatibility.

Pragmas added in more recent versions of the compiler and pragmas added in the future have changed that practice
to conform to the defacto industry standard of not performing macro expansion. (ANSI C places no requirement
on macro expansion of pragmas.)

The following describes how the compiler decides whether or not to macro-expand a given pragma:

In compilation modes other than /STANDARD=COMMON OpenVMS systems) or -std0 (Tru64 UNIX systems),
do Step 1:

Step 1:

The token following the keyword pragma is first checked to see if it is a currently-defined macro. If it is a macro
and the identifier does not match the name of a pragma that is not subject to macro expansion, then just that macro
(with its arguments, if function-like) is expanded. The tokens produced by that macro expansion are then processed
along with the rest of the tokens on the line in Step 2.

In all compilation modes, do Step 2:

Step 2:

The first token following the keyword pragma is checked to see if it matches the name of a pragma that is subject
to macro expansion. If it does, then macro expansion is applied to that token and to the rest of tokens on the line.

The test for matching a known pragma permits an optional double leading underscore. For example, #pragma
__nostandard is equivalent to #pragma standard.

Example
The following example illustrates that for pragmas coded directly with a name that matches a known pragma,
the macro-expansion behavior is generally the same in all modes and is backward-compatible. It is only in cases
where a pragma was coded with a name that was not the name of a known pragma, expecting macro expansion to
produce the pragma name, that backward-compatibility is broken, and then only in common mode. The exception
is made in common mode to maintain compatibility with the Tru64 UNIX preprocessor.

  #define pointer_size error
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  #define m1 e1
  #define e1 pointer_size 32
  #define standard message
  #define x disable(all)
  #define disable(y) enable(y)
  #pragma pointer_size 32  /* In common mode, Step 1 skipped.
                              In other modes, Step 1 finds that
 pointer_size 
                                   is known not to expand.
                              In any mode, Step 2 finds pointer_size is
                                   not a pragma requiring expansion. */
  #pragma m1   /* In common mode, Step 1 skipped.
                  In other modes, Step 1 expands m1 to pointer_size 32.
                  In common mode, Step 2 finds m1 is not a pragma requiring
                         expansion.
                  In other modes, Step 2 finds pointer_size is not a pragma
                         requiring expansion. */
  #pragma standard x  /* In common mode, Step 1 skipped.
                         In other modes, Step 1 expands to message x.
                         In common mode, Step 2 expands to message
 enable(all).
                         In other modes, Step 2 expands message x to
                            message enable(all). */

8.6. Error Directive (#error)
The #error preprocessor directive issues an E-level diagnostic message and continues compilation, but no object
module is produced. This directive has the following syntax:

#error messageopt newline 

8.7. Null Directive (#)
A preprocessing directive of the form # newline is a null directive and has no effect.

8.8. Predefined Macro Names
The following sections describe the predefined macro names that are provided to assist in transporting code and
performing simple tasks common to many programs.

8.8.1. The __DATE__ Macro
The __DATE__ macro evaluates to a string literal specifying the date on which the compilation started. The date
has the following format:

"Mmm dd yyyy"

The names of the months are the same as those generated by the asctime library function. The first d is a space
if dd is less than 10. For example:

printf("%s", __DATE __);

The value of this macro remains constant throughout the translation unit.

8.8.2. The __FILE__ Macro
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The __FILE__ macro evaluates to a string literal specifying the file specification of the current source file. For
example:

printf("file %s",  __FILE __);

8.8.3. The __LINE__ Macro
The __LINE__ macro evaluates to a decimal constant specifying the number of the line in the source file containing
the macro reference. For example:

printf("At line %d in file %s",  __LINE __,  __FILE __);

8.8.4. The __TIME__ Macro
The __TIME__ macro evaluates to a string specifying the time that the compilation started. The time has the
following format (the same as the asctime function):

hh:mm:ss

For example:

printf("%s",  __TIME __);

The value of this macro remains constant throughout the translation unit.

8.8.5. The __STDC__, __STDC_HOSTED__, and
__STDC_VERSION Macros
The __STDC__ macro is set to 1 to indicate a conforming implementation.

The __STDC_HOSTED__ macro is set to 1 if the implementation is a hosted implementation. Otherwise, the
macro is not defined.

The __STDC_VERSION__ macro is set to 199901L in the default mode of the VSI C compiler.

The compiler mode being used (as indicated by the /STANDARD qualifier option or -std switch) determines
whether or not these macros are defined and, if defined, what value they are set to. For additional detail, see your
platform-specific VSI C documentation.

The value of these macros remains constant throughout the translation unit.

8.8.6. The __STDC_ISO_10646__ Macro
The __STDC_ISO_10646__ macro evaluates to an integer constant of the form yyyymmL (for example, 199712L),
intended to indicate that values of type wchar_t are the coded representations of the characters defined by ISO/
IEC 10646, along with all amendments and technical corrigenda as of the specified year and month.

8.8.7. System-Identification Macros
VSI C defines platform-specific macros that can be used to identify the system on which the program is running.
These macros can assist in writing code that executes conditionally depending on whether the program is running
on an VSI system or some other system, or one VSI C platform or another.

These macro definitions can be used to separate portable and nonportable code in a C program by enclosing the
nonportable code in conditionally compiled sections.

They can also be used to conditionally compile sections of C programs used on more than one operating system to
take advantage of system-specific features. See Section 8.2, “Conditional Compilation (#if, #ifdef, #ifndef,
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#else, #elif, #endif, and defined)” for more information about using the conditional-compilation
preprocessor directives.

See your platform-specific VSI C documentation for a list of the system-identification macros.

8.9. The __func__ Predeclared Identifier
The __func__ predeclared identifier evaluates to a static array of char initialized with the spelling of the function's
name. It is visible anywhere within the body of a function definition.

For example, a function defined as follows will print "f1".

void f1(void) {printf("%s\n", __func__);} 
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Chapter 9. The ANSI C Standard
Library
The ANSI C standard defines a set of functions, as well as related types and macros, to be provided with any
implementation of ANSI C. This chapter lists and briefly describes the ANSI-conformant library features common
to all VSI C platforms. See your VSI C library routine documentation for a detailed description of these routines
and their use in your system environment, and for additional headers, functions, types, and macros that may be
available on your operating system.   

All library functions are declared in a header file. To make the contents of a header file available to your program,
include the header file with an #include preprocessor directive. For example:

#include <stddef.h>

Each header file declares a set of related functions, as well as defining any types and macros needed for their use.

The standard headers are:

• Diagnostics: <assert.h> (Section 9.1, “Diagnostics (<assert.h>)”)

• Complex Arithmetic: <complex.h> (Section 9.2, “Complex Arithmetic(<complex.h>)”)

• Character processing: <ctype.h> (Section 9.3, “Character Processing (<ctype.h>)”)

• Error codes: <errno.h> (Section 9.4, “Error Codes (<errno.h>)”)

• ANSI C limits: <limits.h> and <float.h> (Section 9.5, “ANSI C Limits (<limits.h> and
<float.h>)”)

• Localization: <locale.h> (Section 9.6, “Localization (<locale.h>)”)

• Mathematics: <math.h> (Section 9.7, “Mathematics (<math.h>)”)

• Nonlocal jumps: <setjmp.h> (Section 9.8, “Nonlocal Jumps (<setjmp.h>)”)

• Signal handling: <signal.h> (Section 9.9, “Signal Handling (<signal.h>)”)

• Variable arguments: <stdarg.h> (Section 9.10, “Variable Arguments (<stdarg.h>)”)

• Boolean type and values: <stdbool.h> (Section 9.11, “Boolean Type and Values(<stdbool.h>)”)

• Common definitions: <stddef.h> (Section 9.12, “Common Definitions (<stddef.h>)”)

• Input/output: <stdio.h> (Section 9.13, “Standard Input/Output (<stdio.h>)”)

• General utilities: <stdlib.h> (Section 9.14, “General Utilities (<stdlib.h>)”)

• String processing: <string.h> (Section 9.15, “String Processing (<string.h>)”)

• Type-generic Math: <tgmath.h> (Section 9.16, “Type-generic Math (<tgmath.h>)”)

• Date and time: <time.h> (Section 9.17, “Date and Time (<time.h>)”)

Header files can be included in any order. Each can be included more than once in a given scope with no effect
different from being included once. However, the effect of including <assert.h> depends on the definition
of NDEBUG. Include headers outside of any external declaration or definition, and before any reference to the
functions, types, or macros declared or defined in the headers. If an identifier is declared or defined in more than
one included header, the second and subsequent headers containing that identifier can be included after the initial
reference to that identifier.
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9.1. Diagnostics (<assert.h>)
The header <assert.h> defines the assert macro and refers to another macro, NDEBUG, defined elsewhere.
If NDEBUG is defined as a macro name at the point in the source file where <assert.h> is included, the assert
macro is defined as follows:

#define assert(ignore) ((void) 0)\

Macro
void assert(int expression);

Puts diagnostics into programs. If expression is false (zero), the assert macro writes information about the
particular call that failed on the standard error file in an implementation-defined format. It then calls the abort
function. The assert macro returns no value.

9.2. Complex Arithmetic(<complex.h>)
The <complex.h> header file defines macros and declares functions that support complex arithmetic.

Each synopsis specifies a family of functions consisting of a principal function with one or more double complex
parameters and a double complex or double return value; and other functions with the same name but with f and l
suffixes which are corresponding functions with float and long double parameters and return values.

Macros
complex

Expands to _Complex.

_Complex_I

Expands to a constant expression of type const float _Complex, with the value of the imaginary unit. The
imaginary unit is a number i such that i2 = -1.

imaginary

_Imaginary_I

Defined if and only if the implementation supports imaginary types; if defined, they expand to _Imaginary and
a constant expression of type const float _Imaginary with the value of the imaginary unit.

I

Expands to _Imaginary_I or _Complex_I. If _Imaginary_I is not defined, I expands to _Complex_I.

Trigonometric Functions
The cacos functions 

#include <complex.h>
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

The cacos functions compute the complex arc cosine of z, with branch cuts outside the interval [-1,+1] along the
real axis. The cacos functions return the value, in radians, of the complex arc cosine of z in the range of a strip
mathematically unbounded along the imaginary axis and in the interval.
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The casin functions 

#include <complex.h>
double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

The casin functions compute the complex arc sine of z, with branch cuts outside the interval [-1,+1] along the
real axis. The casin functions return the value, in radians, of the complex arc sine of z in the range of a strip
mathematically unbounded along the imaginary axis and in the interval.

The catan functions 

#include <complex.h>
double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

The catan functions compute the complex arc tangent of z, with branch cuts outside the interval [-i,+i] along the
imaginary axis. The catan functions return the value, in radians, of the complex arc tangent of z in the range of
a strip mathematically unbounded along the imaginary axis and in the interval.

The ccos functions  

#include <complex.h>
double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

The ccos functions return the complex cosine of z.

The csin functions 

#include <complex.h>
double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

The csin functions return the complex sine of z.

The ctan functions 

#include <complex.h>
double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

The ctan functions return the complex tangent of z.

Hyperbolic Functions
The cacosh functions 

#include <complex.h>
double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

The cacosh functions compute the complex arc hyperbolic cosine of z, with a branch cut at values less than 1
along the real axis. The cacosh functions return the value, in radians, of the complex arc hyperbolic cosine of z
in the range of a a half-strip of non-negative values along the real axis and in the interval.
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The casinh functions 

#include <complex.h>
double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

The casinh functions compute the complex arc hyperbolic sine of z, with branch cuts outside the interval [-i,+i]
along the imaginary axis. The casinh functions return the complex arc hyperbolic sine value, in the range of a
strip mathematically unbounded along the real axis and in the interval.

The catanh functions 

#include <complex.h>
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

The catanh functions compute the complex arc hyperbolic tangent of z, with branch cuts outside the interval
[-1,+1] along the real axis. The catanh functions return the complex arc hyperbolic tangent value, in the range
of a strip mathematically unbounded along the real axis and in the interval.

The ccosh functions  

#include <complex.h>
double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

The ccosh functions return the complex hyperbolic cosine of z.

The csinh functions 

#include <complex.h>
double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

The csinh functions return the complex hyperbolic sine of z.

The ctanh functions 

#include <complex.h>
double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

The ctanh functions return the complex hyperbolic tangent of z.

Exponential and Logarithmic Functions
The cexp functions 

#include <complex.h>
double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

The cexp functions return the complex base e exponential of z.

The clog functions 
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#include <complex.h>
double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

The clog functions compute the complex natural (base e) logarithm of z, with a branch cut along the negative
real axis. The clog functions return the complex natural logarithm value, in the range of a strip mathematically
unbounded along the real axis and in the interval along the imaginary axis.

Power and Absolute-Value Functions
The cabs functions 

#include <complex.h>
double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

The cabs functions return the complex absolute value (also called norm, modulus, or magnitude) of z.

The cpow functions  

#include <complex.h>
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x,
                          long double complex y);

The cpow functions compute the complex power function xy, with a branch cut for the first parameter along the
negative real axis. The cpow functions return the complex power function value.

The csqrt functions  

#include <complex.h>
double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

The csqrt functions compute the complex square root of z, with a branch cut along the negative real axis. The
csqrt functions return the complex square root value, in the range of the right half-plane (including the imaginary
axis).

Manipulation Functions
The carg functions 

#include <complex.h>
double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

The carg functions compute the argument (also called phase angle) of z, with a branch cut along the negative
real axis. The carg functions return the value of the argument in the interval.

The cimag functions 

#include <complex.h>
double cimag(double complex z);
float cimagf(float complex z);
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long double cimagl(long double complex z);

The cimag functions compute the imaginary part of z and return it as a real.

The conj functions 

#include <complex.h>
double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

The conj functions compute complex conjugate of z, by reversing the sign of its imaginary part. The conj
functions return the complex conjugate value.

The cproj functions 

#include <complex.h>
double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

The cproj functions compute a projection of z onto the Riemann sphere: z projects to z except that all complex
infinities (even those with one infinite part and one NaN part) project to positive infinity on the real axis. If z has
an infinite part, then cproj (z) is equivalent to:

INFINITY + I * copysign(0.0, cimag(z))

The cproj functions return the value of the projection onto the Riemann sphere.

The creal functions

#include <complex.h>
double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

The creal functions compute and return the real part of z. For a variable z of complex type, z == creal(z) +
cimag(z)*I.

9.3. Character Processing (<ctype.h>)
The <ctype.h> header file declares several functions for testing characters. For each function, the argument is
an int whose value must be EOF or representable as an unsigned char, and the return value is an integer.

Functions
int isalnum(int c);

Returns a nonzero integer if the character passed to it is an alphanumeric ASCII character. Otherwise, isalnum
returns 0. 

int isalpha(int c);

Returns a nonzero integer if the character passed to it is an alphabetic ASCII character. Otherwise, isalpha
returns 0. 

int iscntrl(int c);

Returns a nonzero integer if the character passed to it is an ASCII DEL character (177 octal, 0x7F hex) or any
nonprinting ASCII character (a code less than 40 octal, 0x20 hex). Otherwise, iscntrl returns 0. 
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int isdigit(int c);

Returns a nonzero integer if the character passed to it is a decimal digit character (0 to 9). Otherwise, isdigit
returns 0. 

int isgraph(int c);

Returns a nonzero integer if the character passed to it is a graphic ASCII character (any printing character except
a space character). Otherwise, isgraph returns 0. 

int islower(int c);

Returns a nonzero integer if the character passed to it is a lowercase alphabetic ASCII character. Otherwise,
islower returns 0. 

int isprint(int c);

Returns a nonzero integer if the character passed to it is an ASCII printing character, including a space character.
Otherwise, isprint returns 0. 

int ispunct(int c);

Returns a nonzero integer if the character passed to it is an ASCII punctuation character (any printing character
that is nonalphanumeric and greater than 40 octal, 0x20 hex). Otherwise, ispunct returns 0. 

int isspace(int c);

Returns a nonzero integer if the character passed to it is white space. Otherwise, isspace returns 0. The standard
white space characters are:

• space (' ')

• form feed ('\f')

• new line ('\n')

• carriage return ('\r')

• horizontal tab ('\t')

• vertical tab ('\v')

int isupper(int c);

Returns a nonzero integer if the character passed to it is an uppercase alphabetic ASCII character. Otherwise,
isupper returns 0. 

int isxdigit(int c);

Returns a nonzero integer if the character passed to it is a hexadecimal digit (0 to 9, A to F, or a to f). Otherwise,
isxdigit returns 0. 

int tolower(int c);

Converts an uppercase letter to lowercase. c remains unchanged if it is not an uppercase letter.

int toupper(int c);

Converts a lowercase letter to uppercase. c remains unchanged if it is not a lowercase letter. 

9.4. Error Codes (<errno.h>)
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The <errno.h> header file defines several macros used for error reporting.

Macros
EDOM

ERANGE

Error codes that can be stored in errno. They expand to integral constant expressions with unique nonzero values.

Variable or Macro
errno

An external variable or a macro that expands to a modifiable lvalue with type int, depending on the operating
system. The errno variable is used for holding implementation-defined error codes from library routines. All
error codes are positive integers. The value of errno is 0 at program startup, but is never set to 0 by any library
function. Therefore, errno should be set to 0 before calling a library function and then inspected afterward.

9.5. ANSI C Limits (<limits.h> and
<float.h>)
The <limits.h> and <float.h> header files define several macros that expand to various implementation-
specific limits and parameters, most of which describe integer and floating-point properties of the hardware. See
your platform-specific VSI C documentation for details.

9.6. Localization (<locale.h>)
The <locale.h> header file declares two functions and one type and defines several macros.

Type
struct lconv

A structure containing members relating to the formatting of numeric values. The structure contains the following
members in any order, with values shown in the comments:

char *decimal_point;        /*  "."       */
char *thousands_sep;        /*  ""        */
char *grouping;             /*  ""        */
char *int_curr_symbol;      /*  ""        */
char *currency_symbol;      /*  ""        */
char *mon_decimal_point;    /*  ""        */
char *mon_thousands_sep;    /*  ""        */
char *mon_grouping;         /*  ""        */
char *positive_sign;        /*  ""        */
char *negative_sign;        /*  ""        */
char int_frac_digits;       /*  CHAR_MAX  */
char frac_digits;           /*  CHAR_MAX  */
char p_cs_precedes;         /*  CHAR_MAX  */
char p_sep_by_space;        /*  CHAR_MAX  */
char n_cs_precedes;         /*  CHAR_MAX  */
char n_sep_by_space;        /*  CHAR_MAX  */
char p_sign_posn;           /*  CHAR_MAX  */
char n_sign_posn;           /*  CHAR_MAX  */
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These members are described under the localeconv function in this section.

Macros
NULL

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC_TIME

Expand to integral constant expressions with distinct values, and can be used as the first argument to the
setlocale function.

Functions
char *setlocale(int category, const char *locale);

Selects the appropriate portion of the program's locale as specified by the category and locale arguments. This
function can be used to change or query the program's entire current locale or portions thereof.

The following values can be specified for the category argument:

LC_ALL – affects the program's entire locale.
LC_COLLATE – affects the behavior of the strcoll and strxfrm functions.
LC_CTYPE – affects the behavior of the character-handling functions and multibyte functions.
LC_MONETARY – affects the monetary-formatting information returned by the localeconv function.
LC_NUMERIC – affects the decimal-point character for the formatted I/O functions and string-conversion
functions, as well as the nonmonetary formatting information returned by the localeconv function.
LC_TIME – affects the behavior of the strftime function.

The following values can be specified for the locale argument:

• "C" – specifies the minimal environment for C translation

• "" – specifies the use of the environment variable corresponding to category. If this environment variable is not
set, the LANG environment variable is used. If LANG is not set, an error is returned.

At program startup, the equivalent of the following is executed: setlocale(LC_ALL, "C");

The setlocale function returns one of the following:

• If a pointer to a string is specified for locale and the selection can be honored, setlocale returns a pointer
to the string associated with the specified category for the new locale. If the selection cannot be honored,
setlocale returns a null pointer and the program's locale is not changed.

• If a null pointer is specified for locale, setlocale returns a pointer to the string associated with the category
for the program's current locale. The program's locale is not changed.

In either case, the returned pointer to the string is such that a subsequent call with that string value and its associated
category will restore that part of the program's locale. This string must not be modified by the program, but it can
be overwritten by subsequent calls to setlocale.

struct lconv *localeconv(void);
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Sets the components of an object with type struct lconv with values appropriate for formatting numeric
quantities according to the rules of the current locale.

The structure members with type char * are pointers to strings, any of which (except decimal_point) can
point to "", which indicates that the value has zero length or is not available in the current locale. Structure members
of type char are nonnegative numbers, any of which can be CHAR_MAX to indicate that the value is not available
in the current locale. Structure members include the following:

• char *decimal_point

The decimal-point character used to format nonmonetary quantities.

• char *thousands_sep

The character used to separate groups of digits before the decimal point in formatted nonmonetary quantities.

• char *grouping

A string whose elements indicate the size of each group of digits in formatted nonmonetary quantities.

• char *int_curr_symbol

The international currency symbol applicable to the current locale. The first three characters contain the
alphabetic international currency symbol in accordance with those specified in ISO 4217 Codes for the
Representation of Currency and Funds. The fourth character (immediately preceding the null character) is the
character used to separate the international currency symbol from the monetary quantity.

• char *currency_symbol

The local currency symbol applicable to the current locale.

• char *mon_decimal_point

The decimal-point character used to format monetary quantities.

• char *mon_thousands_sep

The character used to separate groups of digits before the decimal point in formatted monetary quantities.

• char *mon_grouping

A string whose elements indicate the size of each group of digits in formatted monetary quantities.

• char *positive_sign

The string used to indicate a nonnegative formatted monetary quantity.

• char *negative_sign

The string used to indicate a negative formatted monetary quantity.

• char int_frac_digits

The number of fractional digits to be displayed in internationally formatted monetary quantities.

• char frac_digits

The number of fractional digits to be displayed in formatted monetary quantities.

• char p_cs_precedes

Set to 1 if the currency_symbol precedes the value for a nonnegative formatted monetary quantity; set to
0 if the currency_symbol follows the value.
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• char p_sep_by_space

Set to 1 if the currency_symbol is separated by a space from the value for a nonnegative formatted monetary
quantity; set to 0 if there is no space.

• char n_cs_precedes

Set to 1 if the currency_symbol precedes the value for a negative formatted monetary quantity; set to 0 if
the currency_symbol follows the value.

• char n_sep_by_space

Set to 1 if the currency_symbol is separated by a space from the value for a negative formatted monetary
quantity; set to 0 if there is no space.

• char p_sign_posn

Set to a value indicating the positioning of the positive_sign for a nonnegative formatted monetary
quantity.

• char n_sign_posn

Set to a value indicating the positioning of the negative_sign for a negative formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

• CHAR_MAX – no further grouping is to be performed.

• 0 – the previous element is to be repeatedly used for the remainder of the digits.

• other – the integer value is the number of digits that comprise the current group. The next element is examined
to determine the size of the next group of digits before the current group.

The value of p_sign_posn and n_sign_posn is interpreted as follows:

• 0 – parentheses surround the quantity and currency_symbol

• 1 – the sign string precedes the quantity and currency_symbol

• 2 – the sign string follows the quantity and currency_symbol

• 3 – the sign string immediately precedes the currency_symbol

• 4 – the sign string immediately follows the currency_symbol

The localeconv function returns a pointer to the filled in structure. The structure must not be modified by
the program, but might be overwritten by subsequent calls to localeconv or to setlocale with categories
LC_ALL, LC_MONETARY, or LC_NUMERIC.

9.7. Mathematics (<math.h>)
The <math.h> header file defines types, macros, and several mathematical functions. The functions take
double arguments and return double-precision values.

The behavior of the functions in this header is defined for all representable values of their input arguments. Each
function executes as if it were a single operation, without generating any externally visible exceptions.

For all functions, a domain error occurs if an input argument is outside the domain over which the mathematical
function is defined. The description of each function lists any domain errors. On a domain error, the function
returns an implementation-defined value; the value of the EDOM macro is stored in errno.
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For all functions, a range error occurs if the result of the function cannot be represented as a double value. If the
result overflows (the magnitude of the result is so large that it cannot be represented in an object of the specified
type), the function returns the value of the macro HUGE_VAL, with the same sign (except for the tan function) as
the correct value of the function; the value of the ERANGE macro is stored in errno. If the result underflows (the
magnitude of the result is so small that it cannot be represented in an object of the specified type), the function
returns 0; whether the value of the ERANGE macro is stored in errno is implementation-defined.

Macros
HUGE_VAL

Expands to a positive double expression.

INFINITY

Expands to a constant expression of type float representing positive or unsigned infinity, if available; otherwise,
expands to a positive constant of type float that overflows at translation time. 

NAN

Expands to a constant expression of type float representing a quiet NaN. 

Trigonometric Functions
double acos(double x);

Returns the value, in radians, of the arc cosine of x in the range. A domain error occurs for arguments not in the
interval [-1,+1]. 

double asin(double x);

Returns the value, in radians, of the arc sine of x in the range. A domain error occurs for arguments not in the
interval [-1,+1].

double atan(double x);

Returns the value, in radians, of the arc tangent of x in the range. 

double atan2(double y, double x);

Returns the value, in radians, of the arc tangent of y/x, using the signs of both arguments to determine the quadrant
of the return value. The value returned is in the range. A domain error may occur if both arguments are 0. 

double cos(double x);

Returns the value, in radians, of the cosine of x. 

double sin(double x);

Returns the value, in radians, of the sine of x. 

double tan(double x);

Returns the value, in radians, of the tangent of x. 

Hyperbolic Functions
double cosh(double x);

Returns the value of the hyperbolic cosine of x. A range error occurs if the magnitude of x is too large. 
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double sinh(double x);

Returns the value of the hyperbolic sine of x. A range error occurs if the magnitude of x is too large. 

double tanh(double x);

Returns the value of the hyperbolic tangent of x. 

Exponential and Logarithmic Functions
double exp(double x);

Returns the value of the exponential function of x. A range error occurs if the magnitude of x is too large. 

double frexp(double value, int *eptr);

Breaks the floating-point number value into a normalized fraction in the interval [1/2, 1) or 0, which it returns,
and an integral power of 2, which it stores in the int object pointed to by eptr. If value is 0, both parts of the
result are 0. 

double ldexp(double x, int exp);

Multiplies a floating-point number by an integral power of 2, and returns the value x × 2exp. A range error may
occur.

double log(double x);

Returns the natural logarithm of x. A domain error occurs if the argument is negative. A range error may occur
if the argument is 0. 

double log10(double x);

Returns the base-ten logarithm of x. A domain error occurs if x is negative. A range error may occur if x is 0. 

double modf(double value, double *iptr);

Breaks the argument value into integral and fractional parts, each of which has the same sign as the argument. The
modf function returns the signed fractional part and stores the integral part as a double in the object pointed
to by iptr. 

Power Functions
double pow(double x, double y);

Returns the value xy. A domain error occurs if x is negative and y is not an integral value. A domain error occurs
if the result cannot be represented when x is 0 and y is less than or equal to 0. A range error may occur. 

double sqrt(double x);

Returns the nonnegative square root of x. A domain error occurs if x is negative. 

Nearest Integer, Absolute Value, and Remainder
Functions
double ceil(double x);

Returns the smallest integral value not less than x. 

double fabs(double x);
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Returns the absolute value of a floating-point number x

double floor(double x);

Returns the largest integral value not greater than x. 

double fmod(double x, double y);

Computes the floating-point remainder of x/y. The fmod function returns the value x - i * y, for some integer i
such that if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y. The function
returns 0 if y is 0. 

9.8. Nonlocal Jumps (<setjmp.h>)
The <setjmp.h> header file contains declarations that provide a way to avoid the normal function call and
return sequence, typically to permit an intermediate return from a nested function call.

Macro
int setjmp(jmp_buf env)

Sets up the local jmp_buf buffer and initializes it for the jump (the jump itself is performed with longjmp.)
This macro saves the program's calling environment in the environment buffer specified by the env argument for
later use by the longjmp function. If the return is from a direct invocation, setjmp returns 0. If the return is
from a call to longjmp, setjmp returns a nonzero value. 

Type
jmp_buf

An array type suitable for holding the information needed to restore a calling environment.

Function
void longjmp(jmp_buf env, int value;)

Restores the context of the environment buffer env that was saved by invocation of the setjmp function in the
same invocation of the program. The longjmp function does not work if called from a nested signal handler;
the result is undefined. The value specified by value is passed from longjmp to setjmp. After longjmp is
completed, program execution continues as if the corresponding invocation of setjmp had just returned value.
If value is passed to setjmp as 0, it is converted to 1. 

9.9. Signal Handling (<signal.h>)
The <signal.h> header file declares a type and two functions and defines several macros for handling exception
conditions that might be reported during program execution.

Type
sig_atomic_t

The integral type of an object that can be accessed as an atomic entity, even in the presence of asynchronous
interrupts. 

Macros
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SIG_DFL

SIG_ERR

SIG_IGN

Expand to constant expressions with distinct values that have a type compatible with the second argument to, and
the return value of, the signal function, and whose value compares unequal to the address of any declarable
function.

Functions
void (*signal(int sig, void (*handler) (int))) (int);

Determines how subsequent signals are handled. Signals are handled in the following way:

1. If the value of handler is SIG_DFL, default handling of that signal occurs.

2. If the value of handler is SIG_IGN, the signal is ignored.

3. Otherwise, when that signal occurs, a function pointed to by handler is called with the argument of the type
of signal. Such a function is called a signal handler. Valid signals include:

• SIGABRT – abnormal termination, such as from the abort function

• SIGFPE – arithmetic error, such as zero divide or overflow

• SIGILL – invalid function image, such as an invalid instruction

• SIGINT – interactive attention, such as an interrupt

• SIGSEGV – invalid access to storage, such as outside of memory limit

• SIGTERM – termination request sent to the program

Any other signals are operating-system dependent.

If the request can be honored, the signal function returns the value of handler for the most recent call to
signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned and an implementation-defined
positive value is stored in errno.

int raise(int sig);

Sends the signal sig to the executing program. The raise function returns 0 if successful and nonzero if
unsuccessful. 

9.10. Variable Arguments (<stdarg.h>)
The <stdarg.h> header file declares a type and defines three macros for advancing through a list of function
arguments of varying number and type.

Type
va_list

A type suitable for holding information needed by the macros va_start, va_arg, and va_end. 

To access varying arguments, the called function must declare an object (referred to as ap in this section) that has
the type va_list:
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va_list ap;

The object ap can be passed as an argument to another function. If that function invokes the va_arg macro with
parameter ap, the value of ap in the calling function is indeterminate and is passed to the va_end macro before
any further reference to ap.

Macros
void va_start(va_list ap, parmN);

Initializes ap for subsequent use by va_arg and va_end. The va_start macro must be invoked before any
access to the unnamed arguments. The parameter parmN is the identifier of the rightmost parameter in the variable
parameter list of the function definition. If parmN is declared with the register storage class, with a function or
array type, or with a type that is not compatible with the type that results after application of the default arguments
promotions, the behavior is undefined. The va_start macro returns no value. 

type va_arg(va_list ap, type);

Expands to an expression that has the type and value of the next argument in the call. The parameter ap is the
same as the va_list ap that was initialized by va_start. Each invocation of va_arg modifies ap so that
the values of successive arguments are returned in turn. The parameter type is a type name specified such that the
type of a pointer to an object that has the specified type can be obtained by postfixing an asterisk (*) to type. The
behavior is undefined if there is no actual next argument, or if type is not compatible with the type of the next
actual argument (as promoted according to the default argument promotions). The first invocation of va_arg
after that of va_start returns the value of the argument after that specified by parmN. Successive invocations
return the values of the remaining arguments in turn.

void va_end(va_list ap);

Facilitates a normal return from the function whose variable argument list was referred to by the expansion of
va_start that initialized the va_list ap object. The va_end macro can modify ap so that it can no longer
be used (without an intervening invocation of va_start). If there is no corresponding invocation of va_start
or if va_end is not invoked before the return, the behavior is undefined. The va_end macro returns no value.

9.11. Boolean Type and Values(<stdbool.h>)
The <stdbool.h> header file defines four macros.

Macros
bool

Expands to _Bool.

true

false

__bool_true_false_are_defined

Suitable for use in #if preprocessing directives. true expands to the integer constant 1. false expands to the
integer constant 0. __bool_true_false_are_defined expands to the integer constant 1.

9.12. Common Definitions (<stddef.h>)
The <stddef.h> header file defines several types and macros, some of which are also defined in other header
files.
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Types
ptrdiff

A signed integral type of the result of subtracting two pointers. 

size_t

An unsigned integral type of the result of the sizeof operator. 

wchar_t

An integral type whose range of values can represent distinct codes for all members of the largest extended
character set specified among the supported locales. 

Macros
NULL

Expands to an implementation-defined null pointer constant. 

offsetof(type, member-designator)

Expands to an integral constant expression that has type size_t and a value that is the offset, in bytes, to the
structure member (specified by member-designator) from the beginning of its structure (specified by type). The
member-designator is such that the expression &(t.member-designator) evaluates to an address constant
given the following: static type t;. If the specified member is a bit field, the behavior is undefined.

9.13. Standard Input/Output (<stdio.h>)
The <stdio.h> header file declares three types, several macros, and many functions for performing text input
and output. A text stream consists of a sequence of lines; each line ends with a new-line character.+

Types
size_t

An unsigned integral type of the result of the sizeof operator.

FILE

An object type capable of recording all the information needed to control a data stream, including its file-position
indicator, a pointer to its associated buffer (if any), an error indicator that records whether a read/write error
occurred, and an end-of-file indicator that records whether the end of the file has been reached. 

fpos_t

An object capable of recording all the information needed to uniquely specify every position within a file. 

Macros
NULL

Expands to an implementation-defined null pointer constant.

_IOFBF

_IOLBF

_IONBF
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Expand to integral constant expressions with distinct values, suitable for use as the third argument to the setvbuf
function. 

BUFFSIZ

Expands to an integral constant expression, which is the size of the buffer used by the setbuf function. 

EOF

Expands to a negative integral constant expression that is returned by several functions to indicate end-of-file.

FOPEN_MAX

Expands to an integral constant expression that is the minimum number of files that the VSI C compiler for your
system guarantees can be open simultaneously. 

FILENAME_MAX

Expands to an integral constant expression that is the size needed for an array of char large enough to hold the
longest file name string that the VSI C compiler for your system guarantees can be opened. 

L_tmpnam

Expands to an integral constant expression that is the size needed for an array of char large enough to hold a
temporary file name string generated by the tmpnam function.

SEEK_CUR

SEEK_END

SEEK_SET

Expand to integral constant expressions with distinct values; suitable for use as the third argument to the fseek
function.

TMP_MAX

Expands to an integral constant expression that is the minimum number of unique file names that can be generated
by the tmpnam function.

stderr

stdin

stdout

Expressions of type pointer to FILE that point to the FILE objects associated, respectively, with the standard
error, input, and output streams.

File Operation Functions
int remove(const char *filename);

Makes the file whose name is pointed to by filename no longer accessible by that name. Any subsequent attempt
to open that file using that name will fail. The remove function returns 0 if the operation succeeds, nonzero if it
fails. If the file is open, the behavior of this function is implementation-defined. 

int rename(const char *old, const char *new);

Renames the file from the name pointed to by old to the name pointed to by new. The file is no longer accessible
by the old name. The rename function returns 0 if the operation succeeds, nonzero if it fails (in which case the
file, if it existed, is still known by its original name). If the new file exists before rename is called, the behavior
of this function is implementation-defined. 
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FILE *tmpfile(void);

Creates a temporary binary file that is automatically removed when it is closed or when program execution ends.
If execution ends abnormally, whether an open temporary file is removed is implementation-dependent. The file
is opened for update with wb+ mode (see Table 9.1, “File Modes”). The tmpfile function returns a pointer to
the stream of the file that it created. If the file cannot be created, tmpfile returns a null pointer. 

FILE *tmpnam(void);

Generates a valid file name that is different than the name of an existing file. Each call to tmpnam, up to TMP_MAX
times, generates a different name. If tmpnam is called more than TMP_MAX times, the behavior is implementation-
defined. If the argument is a null pointer, the tmpnam function leaves its result in an internal static object and
returns a pointer to that object. Subsequent calls to tmpnam can modify the same object. If the argument is not
a null pointer, it is assumed to point to an array of at least L_tmpnam chars. The tmpnam function writes its
result into that array and returns the argument as its value. 

File Access Functions
int fclose(FILE *stream);

Flushes the stream pointed to by stream and closes the associated file. Any unwritten buffered data for the stream
is delivered to the host environment to be written to the file. Any unread buffered data is discarded. The stream
is disassociated from the file. If the associated buffer was automatically allocated, it is deallocated. The fclose
function returns 0 if the stream was successfully closed, or it returns EOF if any errors are detected. 

int fflush(FILE *stream);

If stream points to an output stream or an update stream in which the most recent operation was not input, the
fflush function delivers any unwritten data to the host environment to be written to the file. Otherwise, the
behavior is undefined. If stream is a null pointer, fflush flushes all output or update streams in which the most
recent operation was not input. The fflush function returns 0 if the operation is successful, or it returns EOF
if a write error occurs. 

FILE *fopen(const char *filename, const char *mode);

Opens the file pointed to by filename and associates a stream with it. The argument mode points to a string
beginning with one of the character sequences listed in Table 9.1, “File Modes”. Additional characters can follow
these sequences.

Table 9.1. File Modes

Mode Description
r open text file for reading
w truncate to zero length or create text file for writing
a append; open or create text file for writing at end-of-file
rb open binary file for reading
wb truncate to zero length or create binary file for writing
ab append; open or create binary file for writing at end-of-file
r+ open text file for update (reading and writing)
w+ truncate to zero length or create text file for update
a+ append; open or create text file for update, writing at end-of-file
r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create binary file for update
a+b or ab+ append; open or create binary file for update, writing at end-of-file

169



The ANSI C Standard Library

The fopen function returns a pointer to the object controlling the stream. If the open operation fails, fopen
returns a null pointer.

FILE *freopen(const char *filename, const char *mode, FILE *stream);

Opens the file pointed to by filename and associates the stream pointed to by stream with it. The mode argument
is used in the same way as with the fopen function. The freopen function first tries to close any file associated
with the specified stream. Failure to close the file successfully is ignored. The error and end-of-file indicators
for the stream are cleared. The primary use of freopen is to change the file associated with a standard text
stream (stderr, stdin, or stdout), because those identifiers need not be modifiable lvalues to which the
value returned by the fopen function can be assigned. The freopen function returns a pointer to the object
controlling the stream. If the open operation fails, freopen returns a null pointer.

void setbuf(FILE *stream, char *buf);

Except that it returns no value, the setbuf function is equivalent to the setvbuf function invoked with the
values _IOFBF for mode and BUFSIZ for size, or (if buf is a null pointer) with the value _IONBF for mode.

int setvbuf(FILE *stream, char *buf, int mode size_t size);

Associates a buffer with an input or an output file. The setvbuf function can be used only after the stream
pointed to by stream has been associated with an open file and before any other operation is performed on the
stream. The argument mode determines how stream is to be buffered: 

• IOFBF causes I/O to be fully buffered.

• IOLBF causes I/O to be line buffered.

• IONBF causes I/O to be unbuffered.

If buf is not a null pointer, the array it points to can be used instead of a buffer allocated by the setvbuf function.
The size of the array is specified by size. The contents of the array at any time are indeterminate. The setvbuf
function returns 0 if successful, or nonzero if an invalid value is specified for mode or if the request cannot be
honored.

Formatted Input/Output Functions
int fprintf(FILE *stream, const char *format, ...);

Writes output to the stream pointed to by stream, under control of the string pointed to by format, which specifies
how subsequent arguments are converted for output. If there are an insufficient number of arguments for the format,
the behavior is undefined. If the format is exhausted while arguments remain, the excess arguments are evaluated
but are otherwise ignored. The fprintf function returns when the end of the format string is encountered. The
fprintf function returns the number of characters transmitted, or it returns a negative value if an output error
occurred. See your VSI C library routine documentation for more information. 

int fscanf(FILE *stream, const char *format, ...);

Reads input from the stream pointed to by stream, under control of the string pointed to by format, which specifies
the allowable input sequences and how they are to be converted for assignment, using subsequent arguments as
pointers to the objects to receive the converted input. If there are an insufficient number of arguments for the
format, the behavior is undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored. The fscanf function returns the value of the macro EOF if an input failure
occurs before any conversion. Otherwise, fscanf returns the number of input items assigned, which can be fewer
than provided for, or even 0, if there is an early matching failure. See your VSI C library routine documentation
for more information. 

int printf(const char *format, ...);

Equivalent to the fprintf function except that printf writes formatted output to the standard output stream
(stdout).
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int scanf(const char *format, ...);

Equivalent to the fscanf function except that scanf reads formatted input from the standard input stream
(stdin). 

int sprintf(char *s, const char *format, ...);

Equivalent to the fprintf function except that the argument s specifies an array, rather than a stream, into which
the generated output will be written. A null character is written at the end of the characters written. If copying
takes place between objects that overlap, the behavior is undefined. The sprintf function returns the number
of characters written into the array, not counting the terminating null character. 

int sscanf(const char *s, const char *format, ...);

Equivalent to the fscanf function except that the argument s specifies a string, rather than a stream, from which
the input will be read. Reaching the end of the string is equivalent to the fscanf function encountering end-of-
file. If copying takes place between objects that overlap, the behavior is undefined. 

#include <stdarg.h>

int vfprintf(FILE *stream, const char *format, va_list arg);

Equivalent to the fprintf function with the variable argument list replaced by arg, which must have been
initialized by the va_start macro (and possibly subsequent va_arg calls). The vfprintf function does not
invoke the va_end macro. 

#include <stdarg.h>

int vprintf(const char *format, va_list arg);

Equivalent to the printf function with the variable argument list replaced by arg, which must have been
initialized by the va_start macro (and possibly subsequent va_arg calls). The vprintf function does not
invoke the va_end macro. 

#include <stdarg.h>

int vsprintf(char *s, const char *format, va_list arg);

Equivalent to the sprintf function with the variable argument list replaced by arg, which must have been
initialized by the va_start macro (and possibly subsequent va_arg calls). The vsprintf function does not
invoke the va_end macro. 

Character Input/Output Functions
int fgetc(FILE *stream);

Returns the next character (if there is one) as an unsigned char converted to an int, from the input stream
pointed to by stream, and advances the associated file-position indicator for the stream (if defined). If the stream
is at end-of-file, the end-of-file indicator for the stream is set, and fgetc returns EOF. If a read error occurs, the
error indicator is set, and fgetc returns EOF. 

char *fgets(char *s, int n, FILE *stream);

Reads at most one less than the number of characters specified by n from the stream pointed to by stream into the
array pointed to by s. No additional characters are read after a new-line character (which is retained) or after the
end-of-file. A null character is written immediately after the last character read into the array. The fgets function
returns s if successful. If the end-of-file is encountered and no characters have been read into the array, the contents
of the array remain unchanged and a null pointer is returned. If a read error occurs during the operation, the array
contents are indeterminate and a null pointer is returned. 

int fputc(int c, FILE *stream);
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Writes the character c (converted to an unsigned char) to the output stream pointed to by stream, at the
position indicated by the associated file position indicator for the stream (if defined), and advances the indicator
appropriately. If the file cannot support positioning requests, or if the stream was opened with append mode, the
character is appended to the output stream. The fputc function returns the character written. If a write error
occurs, the error indicator for the stream is set, and fputc returns EOF. 

int fputs(const char *s, FILE *stream);

Writes the string pointed to by s to the stream pointed to by stream. The terminating null character is not written.
The fputs function returns EOF if a write error occurs. Otherwise, it returns a nonnegative value. 

int getc(FILE *stream);

Equivalent to the fgetc function, but if it is implemented as a macro it can evaluate stream more than once. For
this reason, the argument should never be an expression with side effects. 

int getchar(void);

Equivalent to the getc function with the argument stdin. 

char *gets(char *s);

Reads characters from the input stream pointed to by stdin into the array pointed to by s, until the end-of-file
is encountered or a new-line character is read. Any new-line character is discarded, and a null character is written
immediately after the last character read into the array. The fgets function returns s if successful. If the end-of-
file is encountered and no characters have been read into the array, the contents of the array remain unchanged
and a null pointer is returned. If a read error occurs during the operation, the array contents are indeterminate and
a null pointer is returned. 

int putc(int c, FILE *stream);

Equivalent to the fputc function, but if it is implemented as a macro it can evaluate stream more than once. For
this reason the argument should never be an expression with side effects. 

int putchar(int c);

Equivalent to the putc function with the second argument stdout.

int puts(const char s);

Writes the string pointed to by s to the stream pointed to by stdout, and appends a new-line character to the
output. The terminating null character is not written. The puts function returns EOF if a write error occurs.
Otherwise, it returns a nonnegative value. 

int ungetc(int c, FILE *stream);

Pushes a character c (converted to an unsigned char) back into the input stream pointed to by stream, and
leaves the stream positioned before the character. The pushed back characters are returned by subsequent reads
on that stream in the reverse order of their pushing. A successful intervening call to a file positioning function for
that stream (fseek, fsetpos, or rewind) discards any pushed-back characters. One pushback is guaranteed,
even if there has been no previous activity on the file. The ungetc function returns the converted pushed-back
character, or it returns EOF if the operation fails. 

Direct Input/Output Functions
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

Reads into the array pointed to by ptr up to nmemb elements of size size from the stream pointed to by stream. The
file-position indicator for the stream (if defined) is advanced by the number of characters successfully read. If an
error occurs, the resulting value of the file-position indicator for the stream is indeterminate. If a partial element
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is read, its value is indeterminate. The fread function returns the number of elements successfully read, which
may be less than nmemb if a read error or end-of-file is encountered. If size or nmemb is 0, fread returns 0, and
the contents of the array and the state of the stream are unchanged. 

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

Writes from the array pointed to by ptr up to nmemb elements of size size to the stream pointed to by stream. The
file-position indicator for the stream (if defined) is advanced by the number of characters successfully written. If an
error occurs, the resulting value of the file-position indicator for the stream is indeterminate. The fwrite function
returns the number of elements successfully written, which is less than nmemb only if a write error is encountered. 

File Positioning Functions
int fgetpos(FILE *stream, fpos_t *pos);

Stores the current value of the file-position indicator for the stream pointed to by stream into the object pointed
to by pos. The value stored contains unspecified information used by the fsetpos function to return the stream
to its position at the time of the call to fgetpos. If successful, the fgetpos function returns 0. On failure,
fgetpos returns nonzero and stores an implementation-defined positive value in errno. 

int fseek(FILE *stream, long int offset, int whence);

Sets the file-position indicator to the specified byte offset in the stream pointed to by stream.

For a binary stream, the new position, measured in characters from the beginning of the file, is obtained by adding
offset to the position specified by whence, which is one of the following:

• The beginning of the file if whence is SEEK_SET

• The current value of the file-position indicator if whence is SEEK_CUR

• The end of the file if whence is SEEK_END

For a text stream, either offset is 0 or it is a value returned by an earlier call to the ftell function on the same
stream and whence is SEEK_SET.

A successful call to fseek clears the end-of-file indicator for the stream and reverses any effects of the ungetc
function on the same stream. After an fseek call, the next operation on an update stream can be either input or
output. The fseek function returns nonzero only for a request that cannot be satisfied.

int fsetpos(FILE *stream, const fpos_t *pos);

Sets the file-position indicator for the stream pointed to by stream according to the value of the object pointed to by
pos, which is a value obtained from an earlier call to the fgetpos function on the same stream. A successful call
to fsetpos clears the end-of-file indicator for the stream and reverses any effects of the ungetc function on
the same stream. After an fsetpos call, the next operation on an update stream can be either input or output. If
successful, the fsetpos function returns 0. On failure, fsetpos returns nonzero and stores an implementation-
defined positive value in errno. 

long int ftell(FILE *stream);

Gets the current value of the file-position indicator for the stream pointed to by stream. For a binary stream,
the value is the number of characters from the beginning of the file. For a text stream, its file-position indicator
contains unspecified information used by the fseek function for returning the file-position indicator for the
stream to its position at the time of the call to ftell. The difference between two such return values is not
necessarily a meaningful measure of the number of characters written or read. If successful, the ftell function
returns the current value of the file-position indicator for the stream. On failure, ftell returns -1L and stores an
implementation-defined positive value in errno. 

void rewind(FILE *stream);
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Sets the file-position indicator for the stream pointed to by stream to the beginning of the file. It is equivalent to
the following, except that the error indicator for the stream is also cleared: 

(void)fseek(stream, 0L, SEEK_SET)

The rewind function returns no value.

Error-Handling Functions
void clearerr(FILE *stream);

Clears the end-of-file and error indicators for the stream pointed to by stream. The clearerr function returns
no value. 

int feof(FILE *stream);

Tests the end-of-file indicator for the stream pointed to by stream. The feof function returns nonzero only if the
end-of-file indicator is set for stream. 

int ferror(FILE *stream);

Tests the error indicator for the stream pointed to by stream. The ferror function returns nonzero only if the
end-of-file indicator is set for stream. 

void perror(const char *s);

Maps the error number in the integer expression errno to an error message. It writes the following sequence of
characters to the standard error stream: 

1. The string pointed to by s followed by a colon (:) and a space (if s is not a null pointer and the character pointed
to by s is not the null character)

2. An appropriate error message string followed by a new-line character

The contents of the error message strings are the same as those returned by the strerror function with argument
errno, which are implementation-defined. The perror function returns no value.

9.14. General Utilities (<stdlib.h>)
The <stdlib.h> header file declares four types and several functions of general use, and defines several macros.
The functions perform string conversion, random number generation, searching and sorting, memory management,
and similar tasks.

Types
size_t

An unsigned integral type of the result of the sizeof operator. 

wchar_t

An integral type whose range of values can represent distinct codes for all members of the largest extended
character set specified among the supported locales. 

div_t

A structure type that is the type of the value returned by the div function. 

ldiv_t
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A structure type that is the type of the value returned by the ldiv function. 

Macros
NULL

Expands to an implementation-defined null pointer constant. 

EXIT_FAILURE / EXIT_SUCCESS

Expand to integral expressions for use as the argument to the exit function to return unsuccessful or successful
termination status, respectively, to the host environment. These macros are useful as return values from the main
function as well.  

RAND_MAX

Expands to an integral constant expression whose value is the maximum value returned by the rand function. 

MB_CUR_MAX

Expands to a positive integer expression whose value is the maximum number of bytes in a multibyte character for
the extended character set specified by the current locale (category LC_TYPE), and whose value is never greater
than MB_LEN_MAX. 

String Conversion Functions
double atof(const char *nptr);

Converts the string pointed to by nptr to double representation and returns the converted value. Except for its
behavior when an error occurs, this function is equivalent to:

strtod(nptr, (char **)NULL)

int atoi(const char *nptr);

Converts the string pointed to by nptr to int representation and returns the converted value. Except for its behavior
when an error occurs, this function is equivalent to:

(int)strtol(nptr, (char **)NULL, 10)

long int atol(const char *nptr);

Converts the string pointed to by nptr to long int representation and returns the converted value. Except for
its behavior when an error occurs, this function is equivalent to: 

strtol(nptr, (char **)NULL, 10)

double strtod(const char *nptr, char **endptr);

Converts the string pointed to by nptr to double representation. See your VSI C library routine documentation
for a detailed description of this function. 

long int strtol(const char *nptr, char **endptr, int base);

Converts the string pointed to by nptr to long int representation. See your VSI C library routine documentation
for a detailed description of this function. 

unsigned long int strtoul(const char *nptr, char **endptr, int base);

Converts the string pointed to by nptr to unsigned long int representation. See your VSI C library routine
documentation for a detailed description of this function. 
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Pseudo-Random Sequence Generation Functions
int rand(void);

Returns a sequence of pseudo-random integers in the range 0 to RAND_MAX.

void srand(unsigned int seed);

Uses the argument as a seed for a new sequence of pseudo-random integers to be returned by subsequent calls to
rand. If srand is then called with the same seed value, the sequence of pseudo-random integers is repeated. If
rand is called before any calls to srand are made, the sequence generated is the same as when srand is first
called with a seed value of 1. The srand function returns no value. 

Memory Management Functions
void *calloc(size_t nmemb, size_t size);

Allocates an area in memory for an array of nmemb items, each with size size. The area is initialized to all bits 0.
The calloc function returns either a null pointer if unable to allocate, or a pointer to the allocated area. 

void free(void *ptr);

Deallocates the memory area pointed to by ptr that was allocated by a previous calloc, malloc, or realloc.
If ptr is null, no action occurs. No value is returned. 

void *malloc(size_t size);

Allocates a contiguous area in memory for an object of size size. The area is not initialized. This function returns
a pointer to the allocated area, or it returns a null pointer if unable to allocate. 

void *realloc(void *ptr, size_t size);

Changes the size of the area pointed to by ptr to the number of bytes specified by size. If ptr is null, the behavior of
realloc is identical to malloc. The contents of the area are unchanged up to the lesser of the old and new sizes.
This function returns either a null pointer if unable to resize, or a pointer to the possibly moved reallocated area. 

Communication with the Environment
void abort(void);

Causes abnormal program termination to occur, unless the SIGABRT signal is being caught and the signal handler
does not return. The abort function cannot return to its caller. 

int atexit(void (*func)(void));

Registers the function pointed to by func to be called without arguments at normal program termination. Up to
32 functions can be registered. The atexit function returns 0 if the registration succeeds; otherwise, it returns
nonzero. 

void exit(int status);

Causes normal program termination to occur. If a program executes more than one call to exit, the behavior is
undefined. Upon execution, the following occurs:

1. All functions registered by atexit are called in the reverse order of their registration.

2. All open output streams are flushed, all open streams are closed, and all files created by tmpfile are removed.

3. Control is returned to the host environment. The value of status corresponds to an errno value:

• If the value status is 0 or EXIT_SUCCESS, a successful termination status is returned.
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• If the value status is EXIT_FAILURE, an unsuccessful termination status is returned.

• Otherwise, an unsuccessful termination status is returned.

char *getenv(const char *name);

Searches an environment list provided by the host environment. See your VSI C library routine documentation
for a detailed description of this function. 

int *system(const char *string);

Passes the string pointed to by string to the host environment for execution by a command processor. A null pointer
can be specified to inquire whether a command processor exists. If the argument is a null pointer, the system
function returns nonzero if a command processor is available or 0 if one is not available. If the argument is not a
null pointer, the return value is the status returned by the command processor or 0 if a command processor is not
available. See your VSI C library routine documentation for a detailed description of this function. 

Searching and Sorting Utilities
void *bsearch(const void *key, const void *base, size_t nmemb, size_t size,
 int (*compar) (const void *, const void *));

Searches an array of nmemb objects for an element that matches the object pointed to by key. The first element of
the array is pointed to by base; the size of each element is specified by size. 

You must first sort the array in ascending order according to the function pointed to by compar. The bsearch
function calls the specified comparison function pointed to by compar with two arguments that point to the objects
being compared (the key object and an array element). The comparison function returns:

• An integer less than 0, if the first argument is less than the second argument

• An integer greater than 0, if the first argument is greater than the second argument

• An integer equal to 0, if the first argument equals the second argument

The bsearch function returns a pointer to the matching element of the array, or a null pointer if no match is found.

void qsort(void *base, size_t nmemb, size_t size, int (*compar) (const void
 *, const void *));

Sorts an array of nmemb objects in place. The first element of the array is pointed to by base; the size of each
element is specified by size. 

The contents of the array are sorted in ascending order according to a comparison function pointed to by compar,
which is called with two arguments that point to the objects being compared. The comparison function returns:

• An integer less than 0, if the first argument is less than the second argument

• An integer greater than 0, if the first argument is greater than the second argument

• An integer equal to 0, if the first argument equals the second argument

If two compared elements are equal, their order in the sorted array is unspecified.

The qsort function returns no value.

Integer Arithmetic Functions
int abs(int j);
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Returns the absolute value of an integer j. 

div_t div(int numer, int denom);

Computes the quotient and remainder of the division of numer by denom. The div function returns a structure of
type div_t containing the quotient and remainder: 

int quot;    /* quotient  */int rem;     /* remainder */

long int labs(long int j);

Returns the absolute value of a long integer j. 

ldiv_t ldiv(long int numer, long int denom);

Similar to the div function, except that the arguments and the members of the returned structure (which has type
ldiv_t) all have type long int. 

Multibyte Character Functions
int mblen(const char *s, size_t n);

If s is not a null pointer, mblen determines the number of bytes comprising the multibyte character pointed to by
s. The mblen function is equivalent to the following, except that the shift state of the mbtowc is not affected: 

mbtowc((wchar_t *)0, s, n);

If s is a null pointer, the mblen function returns a nonzero value if multibyte character encodings have state-
dependent encodings, and 0 if they do not.

If s is not a null pointer, the mblen function returns one of the following values:

• 0, if s points to the null character

• The number of bytes that comprise the multibyte character, if the next n or fewer bytes form a valid multibyte
character

• -1, if they do not form a valid multibyte character

int mbtowc(wchar_t *pwc, const char *s, size_t n);

If s is not a null pointer, mbtowc determines the number of bytes comprising the multibyte character pointed to
by s. It then determines the code for the value of type wchar_t that corresponds to that multibyte character. (The
value of the code corresponding to the null character is 0.) If the multibyte character is valid and pwc is not a null
pointer, mbtowc stores the code in the object pointed to by pwc. At most, n bytes of the array pointed to by s are
examined. If s is a null pointer, the mbtowc function returns a nonzero value if multibyte character encodings
have state-dependent encodings, and 0 if they do not. 

If s is not a null pointer, the mbtowc function returns one of the following values:

• 0, if s points to the null character

• The number of bytes that comprise the converted multibyte character, if the next n or fewer bytes form a valid
multibyte character

• -1, if they do not form a valid multibyte character

int wctomb(char *s, wchar_t wchar);

Determines the number of bytes needed to represent the multibyte character corresponding to the code whose value
is wchar, including any change in shift state. This function then stores the multibyte character representation in the
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array object pointed to by s, if s is not a null pointer. At most, MB_CUR_MAX characters are stored. If the value of
wchar is 0, the wctomb function is left in the initial shift state. If s is a null pointer, the wctomb function returns
a nonzero value if multibyte character encodings have state-dependent encodings, and 0 if they do not. 

If s is not a null pointer, the wctomb function returns one of the following values:

• -1, if the value of wchar does not correspond to a valid multibyte character

• the number of bytes that comprise the multibyte character corresponding to the value of wchar

Multibyte String Functions
size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

Converts a sequence of multibyte characters that begin in the initial shift state from the array pointed to by s into
a sequence of corresponding codes, and stores not more than n codes into the array pointed to by pwcs. A null
character is converted to a code value of zero. No multibyte characters that follow a null character are examined or
converted. Each multibyte character is converted as if by a call to mbtowc, except that the shift state of mbtowc
is not affected. If an invalid multibyte character is encountered, the mbstowcs function returns (size_t) -
1. Otherwise, it returns the number of array elements modified, not including a terminating zero code, if any. 

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

Converts a sequence of codes that correspond to multibyte characters from the array pointed to by pwcs into a
sequence of multibyte characters that begins in the initial shift state, and stores these multibyte characters into the
array pointed to by s. The conversion stops if a multibyte character would exceed the limit of n total bytes or if a
null character is stored. Each code is converted as if by a call to wctomb, except that the shift state of wctomb
is not affected. If a code is encountered that does not correspond to a valid multibyte character, the wcstombs
function returns (size_t) - 1. Otherwise, it returns the number of bytes modified, not including a terminating
null character, if any. 

9.15. String Processing (<string.h>)
The <string.h> header file declares one type and several functions, and defines one macro useful for
manipulating character arrays that other objects treat as character arrays.

There are two kinds of string functions declared. The first, with names beginning with str, manipulate character
arrays; the second, with names beginning with mem, manipulate other objects treated as character arrays. Except
for memmove, function behavior is undefined if copying takes place between overlapping objects.

Type
size_t

An unsigned integral type of the result of the sizeof operator. 

Macro
NULL

Expands to an implementation-defined null pointer constant.

Functions
void *memcpy(void *s1, const void *s2, size_t n);

Copies n characters from the object pointed to by s2 to the object pointed to by s1. The function returns s1. 
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void *memmove(void *s1, const void *s2, size_t n);

Copies n characters from the object pointed to by s2 to the object pointed to by s1. Copying takes place as if the
n characters from the object pointed to by s2 are first copied into a temporary array of n characters that does not
overlap the object pointed to by s1 and s2, and then the n characters from the temporary array are copied into the
object pointed to by s1. The memmove function returns s1.

void *memchr(const void *s, int c, size_t n);

Locates the first occurrence of c (converted to an unsigned char) in the first n unsigned characters of the object
pointed to by s. The memchr function returns a pointer to the located character, or a null pointer if the character
was not found. 

int memcmp(const void *s1, const void *s2, size_t n);

Compares the first n characters of the object pointed to by s1 to the first n characters of the object pointed to by
s2. The memcmp function returns an integer less than, equal to, or greater than 0, depending on whether the object
pointed to by s1 is less than, equal to, or greater than the object pointed to by s2. 

void *memset(void *s, int c, size_t n);

Copies the value of c (converted to an unsigned char) into each of the first n characters pointed to by s. The
function returns s. 

char *strcpy(char *s1, const char *s2);

Copies the string pointed to by s2 (including the terminating null character) to the string pointed to by s1. The
strcpy function returns s1. 

char *strncpy(char *s1, const char *s2, size_t n);

Copies no more than n characters from the string pointed to by s2 to the string pointed to by s1, up to but not
including the null terminator of the string pointed to by s2; returns s1. If the string pointed to by s2 is less than n
characters, strncpy pads the copy with null characters. 

char *strcat(char *s1, const char *s2);

Appends a copy of the the string pointed to by s2 (including the terminating null character) to the end of the string
pointed to by s1. The strcat function returns s1. The first character of s2 overwrites the null character of s1. 

char *strncat(char *s1, const char *s2, size_t n);

Appends no more than n characters from the string pointed to by s2 (up to but not including a null character)
to the string pointed to by s1. The strncat function returns s1. The first character of s2 overwrites the null
character of s1. A terminating null character is appended to the result. The first character of s2 overwrites the
null character of s1. 

int strcmp(const char *s1, const char *s2);

Compares the string pointed to by s1 to the string pointed to by s2. The strcmp function returns an integer less
than, equal to, or greater than 0, depending on whether the string pointed to by s1 is less than, equal to, or greater
than the string pointed to by s2. 

int strcoll(const char *s1, const char *s2);

Compares the string pointed to by s1 to the string pointed to by s2, both interpreted as appropriate to the
LC_COLLATE category of the current locale (see Section 9.6, “Localization (<locale.h>)”). The strcoll
function returns an integer less than, equal to, or greater than 0, depending on whether the string pointed to by
s1 is less than, equal to, or greater than the string pointed to by s2, when both are interpreted as appropriate to
the current locale. 

int strncmp(const char *s1, const char *s2, size_t n);
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Compares no more than n characters from the string pointed to by s1 to the string pointed to by s2. The strings are
compared until a null character is encountered, the strings differ, or n is reached. The strncmp function returns
an integer less than, equal to, or greater than 0, depending on whether the string pointed to by s1 is less than, equal
to, or greater than the string pointed to by s2. 

size_t strxfrm(char *s1, const char *s2, size_t n);

Transforms the string pointed to by s2 and places the resulting string into the array pointed to by s1. See your VSI
C library routine documentation for a detailed description of this function.

char *strchr(const char *s, int c);

Locates the first occurrence of c (converted to a char) in the string pointed to by s. The terminating null character
is considered to be part of the string. The function returns a pointer to the located character, or a null pointer if
the character was not found. 

size_t strcspn(const char *s1, const char *s2);

Computes the length of the maximum initial segment of the string pointed to by s1 that consists entirely of
characters not found in the string pointed to by s2. The strcspnv function returns the length of the segment. 

char *strpbrk(const char *s1, const char *s2);

Locates the first occurrence in the string pointed to by s1 of any character from the string pointed to by s2. The
function returns a pointer to the character, or a null pointer if no character in s1 occurs in s2. 

char *strrchr(const char *s, int c);

Locates the last occurrence of c (converted to a char) in the string pointed to by s. The terminating null character
is considered to be part of the string. The function returns a pointer to the located character, or a null pointer if
the character was not found. 

size_t strspn(const char *s1, const char *s2);

Computes the length of the maximum initial segment of the string pointed to by s1 that consists entirely of
characters from the string pointed to by s2. The strspn function returns the length of the segment. 

char *strstr(const char *s1, const char *s2);

Locates the first occurrence in the string pointed to by s1 of the sequence of characters (excluding the terminal
null character) in the string pointed to by s2. The strstr function returns a pointer to the located string, or a null
pointer if the string was not found. If s2 points to a string of zero length, the function returns s1. 

char *strtok(const char *s1, char *s2);

Breaks the string pointed to by s1 into a sequence of tokens, each of which is delimited by a character from the
string pointed to by s2. The first call to strtok() skips characters, looking for the first one that is not in s2. The
function keeps track of its position in the string pointed to by s1 between calls and, as successive calls are made,
the function works through this string, identifying the text token following the one identified by the previous call.
When the function finds a character in s1 that matches a character in s2, it replaces the character in s1 with a null
character. The strtok function returns a pointer to the first character of the token, or a null pointer if there is
no token. 

char *strerror(int errnum);

Maps the error number in errnum to an error message string; returns a pointer to the string. The string pointed
to must not be modified by the program, but can be overwritten by a subsequent call to strerror. 

size_t strlen(const char *s);

Computes the length of the string pointed to by s. The function returns the number of characters that precede the
terminating null character. 
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9.16. Type-generic Math (<tgmath.h>)
The header <tgmath.h> includes the headers <math.h> and <complex.h> and defines several type-generic
macros.

Of the <math.h> and <complex.h> functions without an f (float) or l (long double) suffix, several
have one or more parameters whose corresponding real type is double. For each such function, except modf,
there is a corresponding type-generic macro. The parameters whose corresponding real type is double in the
function synopsis are generic parameters. Use of the macro invokes a function whose corresponding real type and
type domain are determined by the arguments for the generic parameters.

Note

The type-generic implementation of the absolute value function (fabs) is not available for complex types in this
release. You must use the type-specific names (cabs, cabsf, cabsl) instead.

9.16.1. Real-Type Determination
Use of the macro invokes a function whose generic parameters have the corresponding real type determined as
follows:

1. First, if any argument for generic parameters has type long double, the type determined is long double.

2. Otherwise, if any argument for generic parameters has type double or is of integer type, the type determined
is double.

3. Otherwise, the type determined is float.

9.16.2. Unsuffixed Functions in (<math.h>) and
(<complex.h>) with the Same Name
For each unsuffixed function in <math.h> for which there is a function in <complex.h> with the same name
except for a c prefix, the corresponding type-generic macro (for both functions) has the same name as the function
in <math.h>. The corresponding type-generic macro for fabs and cabs is fabs. These functions are:

  <math.h>     <complex.h>    type-generic
  function      function         macro
 -----------   -------------  -------------
   acos           cacos          acos
   asin           casin          asin
   atan           catan          atan
   acosh          cacosh         acosh
   asinh          casinh         asinh
   atanh          catanh         atanh
   cos            ccos           cos
   sin            csin           sin
   tan            ctan           tan
   cosh           ccosh          cosh
   sinh           csinh          sinh
   tanh           ctanh          tanh
   exp            cexp           exp
   log            clog           log
   pow            cpow           pow
   sqrt           csqrt          sqrt
   fabs           cabs           fabs
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If at least one argument for a generic parameter is complex, then use of the macro invokes a complex function;
otherwise, use of the macro invokes a real function.

9.16.3. Unsuffixed Functions in (<math.h>) with no c-
prefixed Counterpart in (<complex.h>)
For each unsuffixed function in <math.h> without a c-prefixed counterpart in <complex.h>, the
corresponding type-generic macro has the same name as the function. These type-generic macros are:

atan2         fma           llround       remainder
cbrt          fmax          log10         remquo
ceil          fmin          log1p         rint
copysign      fmod          log2          round
erf           frexp         logb          scalbn
erfc          hypot         lrint         scalbln
exp2          ilogb         lround        tgamma
expm1         ldexp         nearbyint     trunc
fdim          lgamma        nextafter
floor         llrint        nexttoward

If all arguments for generic parameters are real, then use of the macro invokes a real function; otherwise, use of
the macro results in undefined behavior.

9.16.4. Unsuffixed Functions in (<complex.h>) that
are not c-prefixed Counterparts to Functions in
(<math.h>)
For each unsuffixed function in <complex.h> that is not a c-prefixed counterpart to a function in <math.h>,
the corresponding type-generic macro has the same name as the function:

carg          conj          creal
cimag         cproj

Use of the macro with any real or complex argument invokes a complex function.

9.16.5. Example
Consider the following declarations:

#include <tgmath.h>
int n;
float f;
double d;
long double ld;
float complex fc;
double complex dc;
long double complex ldc;

Given these declarations, functions invoked by use of type-generic macros are as follows:

      macro use               invokes
   ----------------       -----------------------------
   exp(n)                 exp(n), the function
   acosh(f)               acoshf(f)
   sin(d)                 sin(d), the function
   atan(ld)               atanl(ld)
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   log(fc)                clogf(fc)
   sqrt(dc)               csqrt(dc)
   pow(ldc, f)            cpowl(ldc, f)
   remainder(n, n)        remainder(n, n), the function
   nextafter(d, f)        nextafter(d, f), the function
   nexttoward(f, ld)      nexttowardf(f, ld)
   copysign(n, ld)        copysignl(n, ld)
   ceil(fc)               undefined behavior
   rint(dc)               undefined behavior
   fmax(ldc, ld)          undefined behavior
   carg(n)                carg(n), the function
   cproj(f)               cprojf(f)
   creal(d)               creal(d), the function
   cimag(ld)              cimagl(ld)
   cabs(fc)               cabsf(fc)
   carg(dc)               carg(dc), the function
   cproj(ldc)             cprojl(ldc)

9.16.6. Imaginary Arguments
Type-generic macros that accept complex arguments also accept imaginary arguments. If an argument is imaginary,
the macro expands to an expression whose type is real, imaginary, or complex, as appropriate for the particular
function: if the argument is imaginary, then the types of cos, cosh, fabs, carg, cimag, and creal are real;
the types of sin, tan, sinh, tanh, asin, atan, asinh, and atanh are imaginary; and the types of the
others are complex.

Given an imaginary argument, each of the type-generic macros cos, sin, tan, cosh, sinh, tanh, asin,
atan, asinh, atanh is specified by a formula in terms of real functions:

   cos(iy)   = cosh(y)
   sin(iy)   = i sinh(y)
   tan(iy)   = i tanh(y)
   cosh(iy)  = cos(y)
   sinh(iy)  = i sin(y)
   tanh(iy)  = i tan(y)
   asin(iy)  = i asinh(y)
   atan(iy)  = i atanh(y)
   asinh(iy) = i asin(y)
   atanh(iy) = i atan(y)

9.17. Date and Time (<time.h>)
The <time.h> header file defines two macros, and declares four types and several functions for manipulating
time and date information. Some functions process local time, which may differ from calendar time because of
time zone.

Types
size_t

An unsigned integral type of the result of the sizeof operator. 

clock_t
time_t

Arithmetic types capable of representing times. 

struct tm
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Holds the components of a calendar time, called the broken-down time. The structure contains the following
members:

int tm_sec;      /*  seconds after the minute – [0,61]         */
int tm_min;      /*  minutes after the hour – [0,59]           */
int tm_hour;     /*  hours since midnight – [0,23]             */
int tm_mday;     /*  day of the month – [1,31]                 */
int tm_mon;      /*  months since January – [0,11]             */
int tm_year;     /*  years since 1900                           */
int tm_wday;     /*  days since Sunday – [0,6]                 */
int tm_yday;     /*  days since January 1 – [0,365]            */
int tm_isdst;    /*  Daylight Saving Time flag – 0 if          */
                 /*  DST not in effect; positive if it is;      */
                 /*  negative if information is not available.  */

Macros
NULL

Expands to an implementation-defined null pointer constant. 

CLOCKS_PER_SEC

The number per second of the value returned by the clock function. 

Time Conversion Functions
char *asctime(const struct tm *timeptr);

Converts a broken-down time in the structure pointed to by timeptr into a 26-character string in the form of this
example: 

Sat Sep 08 08:10:32 1990\n\0

A pointer to the string is returned.

char *ctime(const time_t *timer);

Converts the calendar time pointed to by timer to local time in a string of the form generated by the asctime
function. A pointer to the string is returned. The ctime function is equivalent to the following: 

asctime(localtime(timer))

struct tm *gmtime(const time_t *timer);

Converts the calendar time pointed to by timer into a broken-down time expressed as Coordinated Universal Time
(UTC). The gmtime function returns a pointer to the broken-down time, or a null pointer if UTC is not available. 

struct tm *localtime(const time_t *timer);

Converts the calendar time pointed to by timer into a broken-down time expressed as local time. The localtime
function returns a pointer to the broken-down time. 

size_t strftime(char *s, size_t maxsize, const char *format, const struct
 tm *timeptr);

Places characters into the array pointed to by s as controlled by the string pointed to by format. The format string
consists of zero or more conversion specifiers and ordinary multibyte characters. All ordinary multibyte characters
(including the terminating null character) are copied unchanged into the array. Each conversion specifier is replaced
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by the appropriate characters as shown in Table 9.2, “strftime Conversion Specifiers”. The appropriate characters
are determined by the LC_TIME category of the current locale and by the values contained in the structure pointed
to by timeptr.

Table 9.2. strftime Conversion Specifiers

Specifier Replaced by
%a The locale's abbreviated weekday name
%A The locale's full weekday name
%b The locale's abbreviated month name
%B The locale's full month name
%c The locale's appropriate date and time representation
%d The day of the month as a decimal number (01 – 31)
%H The hour (24-hour clock) as a decimal number (00 – 23)
%I The hour (12-hour clock) as a decimal number (01 – 12)
%j The day of the year as a decimal number (001 – 366)
%m The month as a decimal number (01 – 12)
%M The minute as a decimal number (00 – 59)
%p The locale's equivalent of the AM/PM designations associated with a 12-hour clock
%S The second as a decimal number (00 – 61)
%U The week number of the year (the first Sunday as the first day of week 1) as a decimal

number (00 – 53)
%w The weekday as a decimal number (0 [Sunday] – 6)
%W The week number of the year (the first Monday as the first day of week 1) as a decimal

number (00 – 53)
%x The locale's appropriate date representation
%X The locale's appropriate time representation
%y The year without century as a decimal number (00 – 99)
%Y The year with century as a decimal number
%Z The time zone name or abbreviation, or by no characters if no time zone can be

determined
%% %

If the total number of resulting characters including the terminating null character is not more than maxsize,
the strftime function returns the number of characters placed into the array pointed to by s, not including the
terminating null character. Otherwise, 0 is returned, and the array contents are indeterminate.

Time Manipulation Functions
clock_t clock(void);

Determines the processor time used. The clock function returns the processor time used by the program since the
beginning of an event related to the program invocation. To determine the time in seconds, divide the return value
by the value of the CLOCKS_PER_SEC macro. If the processor time is not available or cannot be represented, the
value returned is (clock_t)-1. (To measure the time spent in a program, call the clock function at the start
of the program and subtract the return value from that of subsequent calls.)

double difftime(time_t time1, time_t time0);

Returns the difference between the two calendar times time1 and time0, expressed in seconds, as a double.
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time_t mktime(struct tm *timeptr);

Converts the broken-down time, expressed as local time, in the structure pointed to by timeptr into a calendar
time value with the same encoding as that of the values returned by the time function (that is, a value of type
time_t), which it returns. If the calendar time cannot be represented, the value (time_t)-1 is returned. The
original values of the tm_wday and tm_yday time components are ignored, and the original values of the other
components are not restricted to the ranges indicated in the previous discussion of struct_tm. Upon successful
completion of the function, the values of the tm_wday and tm_yday components are set appropriately, and
the other components are set to represent the specified calendar time, but with their values forced to the ranges
indicated in the discussion of struct_tm. The final value of tm_wday is not set until tm_mon and tm_year
are determined.

time_t time(time_t *timer);

Returns the current calendar time. If the calendar time is not available, the value (time_t)-1 is returned.
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Appendix A. Language Syntax
Summary
This section summarizes the syntax of the C language, using the syntax of the ANSI C Standard. Syntactic
categories are indicated with bold type, and literal words or characters are indicated with monospaced,
nonitalicized type. A colon following a syntactic category introduces its definition. Alternative definitions are
listed on separate lines, or are prefaced by the words “one of”. An optional element is indicated by the subscript
opt. For example, the following line indicates an optional expression enclosed in braces: { expressionopt }

The section numbers shown in parentheses refer to the section of the American National Standard for Information
Systems-Programming Language C (document number: X3.159-1989) that discusses that part of the language.

A.1. Lexical Grammar
A.1.1. Tokens
token: (§3.1)

keyword
identifier
constant
string-literal
operator
punctuator
preprocessing-token: (§3.1)

header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each nonwhite-space character that cannot be one of the above

A.1.2. Keywords
keyword: (§3.1.1) one of

    auto        double      int         struct
    break       else        long        switch
    case        enum        register    typedef
    char        extern      return      union
    const       float       short       unsigned
    continue    for         signed      void
    default     goto        sizeof      volatile
    do          if          static      while
    _Bool      _Complex
(Alpha, I64)

A.1.3. Identifiers
identifier: (§3.1.2)

• identifier-nondigit
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• identifier identifier-nondigit

• identifier digit

identifier-nondigit:

nondigit
other implementation-defined characters
nondigit: §3.1.2 one of

    a  b  c  d  e  f  g  h  i  j  k  l  m
    n  o  p  q  r  s  t  u  v  w  x  y  z
    A  B  C  D  E  F  G  H  I  J  K  L  M
    N  O  P  Q  R  S  T  U  V  W  X  Y  Z  _

digit:  (§3.1.2) one of

    0  1  2  3  4  5  6  7  8  9

A.1.4. Constants
constant: (§3.1.3)

floating-constant
integer-constant
enumeration-constant
character-constant
floating-constant: (§3.1.3.1)

decimal-floating-constant
hexadecimal-floating-constant
decimal-floating-constant

fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt
hexadecimal-floating-constant

hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part
floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-
suffixopt
fractional-constant: (§3.1.3.1)

digit-sequenceopt . digit-sequence
digit-sequence .
exponent-part: (§3.1.3.1)

e  signopt  digit-sequence
E  signopt  digit-sequence
sign: (§3.1.3.1) one of

+ -
digit-sequence: (§3.1.3.1)

digit
digit-sequence digit
hexadecimal-fractional-constant:

hexadecimal-digit-sequenceopt . hexadecimal-digit-sequence
hexadecimal-digit-sequence .
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binary-exponent-part:

p  signopt  digit-sequence
P  signopt  digit-sequence
hexadecimal-digit-sequence:

hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit
floating-suffix: (§3.1.3.1) one of

f l F L
integer-constant: (§3.1.3.2)

decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt
decimal-constant: (§3.1.3.2)

nonzero-digit
decimal-constant digit
octal-constant: (§3.1.3.2)

0
octal-constant octal-digit
hexadecimal-constant: (§3.1.3.2)

0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit
nonzero-digit: (§3.1.3.2) one of

    1  2  3  4  5  6  7  8  9

octal-digit: (§3.1.3.2) one of

    0  1  2  3  4  5  6  7

hexadecimal-digit: (§3.1.3.2) one of

    0  1  2  3  4  5  6  7  8  9
    a  b  c  d  e  f
    A  B  C  D  E  F

integer-suffix: (§3.1.3.2)

unsigned-suffix long-suffixopt
long-suffix unsigned-suffixopt
unsigned-suffix: (§3.1.3.2) one of

u U
long-suffix: (§3.1.3.2) one of

l L
enumeration-constant: (§3.1.3.3)

identifier
character-constant: (§3.1.3.4)

' c-char-sequence'
L' c-char-sequence'
c-char-sequence: (§3.1.3.4)
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c-char
c-char-sequence c-char
c-char: (§3.1.3.4)

any member of the source character set except the single-quote ('), backslash
(\), or new-line character
escape-sequence
escape-sequence: (§3.1.3.4)

simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
simple-escape-sequence: (§3.1.3.4) one of

    \'  \"  \?  \\
    \a  \b  \f  \n  \r  \t  \v

octal-escape-sequence: (§3.1.3.4)

\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence: (§3.1.3.4)

x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A.1.5. String Literals
string-literal: (§3.1.4)

“s-char-sequenceopt”
L“s-char-sequenceopt”
s-char-sequence: (§3.1.4)

s-char
s-char-sequence s-char
s-char: (§3.1.4)

any member of the source character set except the double-quote ("), backslash
(\), or new-line character
escape-sequence

A.1.6. Operators
operator: (§3.1.5) one of

    [  ]  (  )  .  ->
    ++  –  &  *  +  -  ~  !  sizeof
    /  %  <<  >>  <  >  <=  >=  ==  !=  ^  |  &&  ||
    ?  :
    =  *=  /=  %=  +=  -=  <<=  >>=  &=  ^=  |=
    ,  #  ##

A.1.7. Punctuators
punctuator: (§3.1.6) one of

    [  ]  (  )  {  }  *  ,  :  =  ;  ...  #
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A.1.8. Header Names
header-name: (§3.1.7)

<h-char-sequence>
“q-char-sequence”
h-char-sequence: (§3.1.7)

h-char
h-char-sequence h-char
h-char: (§3.1.7)

any member of the source character set except the new-line character and >
q-char-sequence: (§3.1.7)

q-char
q-char-sequence q-char
q-char: (§3.1.7)

any member of the source character set except the new-line character and "

A.1.9. Preprocessing Numbers
pp-number: (§3.1.8)

digit
. digit
pp-number digit
pp-number nondigit
pp-number  e sign
pp-number  E sign
pp-number .

A.2. Phrase Structure Grammar
A.2.1. Expressions
primary-expression: (§3.3.1)

identifier
constant
string-literal
( expression )
postfix-expression: (§3.3.2)

primary-expression
postfix-expression [ expression ]
postfix-expression (argument-expression-listopt )
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression - -
argument-expression-list: (§3.3.2)

assignment-expression
argument-expression-list , assignment-expression
unary-expression: (§3.3.3)
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postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name )
unary-operator: (§3.3.3) one of

    &  *  +  -  ~  !

cast-expression: (§3.3.4)

unary-expression
( type-name ) cast-expression
multiplicative-expression: (§3.3.5)

cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression
additive-expression: (§3.3.6)

multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
shift-expression: (§3.3.7)

additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
relational-expression: (§3.3.8)

shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
equality-expression: (§3.3.9)

relational-expression
equality-expression == relational-expression
equality-expression != relational-expression
AND-expression: (§3.3.10)

equality-expression
AND-expression & equality-expression
exclusive-OR-expression: (§3.3.11)

AND-expression
exclusive-OR-expression ^ AND-expression
inclusive-OR-expression: (§3.3.12)

exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression
logical-AND-expression: (§3.3.13)

inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression
logical-OR-expression: (§3.3.14)

logical-AND-expression
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logical-OR-expression || logical-AND-expression
conditional-expression: (§3.3.15)

logical-OR-expression
logical-OR-expression ? expression : conditional-expression
assignment-expression: (§3.3.16)

conditional-expression
unary-expression assignment-operator assignment-expression
assignment-operator: (§3.3.16) one of

    =  *=  /=  %=  +=  -=  <<=  >>=  &=  ^=  |=

expression: (§3.3.17)

assignment-expression
expression , assignment-expression
constant-expression: (§3.4)

conditional-expression

A.2.2. Declarations
declaration: (§3.5)

declaration-specifiers init-declarator-listopt ;
declaration-specifiers: (§3.5)

storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt
init-declarator-list: (§3.5)

init-declarator
init-declarator-list , init-declarator
init-declarator: (§3.5)

declarator
declarator = initializer
storage-class-specifier: (§3.5.1)

typedef
extern
static
auto
register
type-specifier: (§3.5.2)

void
char
short
int
long
float
double
signed
unsigned_Bool_Complex (Alpha, I64)
struct-or-union-specifier
enum-specifier
typedef-name
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struct-or-union-specifier: (§3.5.2.1)

struct-or-union identifieropt {struct-declaration-list }
struct-or-union identifier
struct-or-union: (§3.5.2.1)

struct
union
struct-declaration-list: (§3.5.2.1)

struct-declaration
struct-declaration-list struct-declaration
struct-declaration: (§3.5.2.1)

specifier-qualifier-list struct-declarator-list ;
specifier-qualifier-list: (§3.5.2.1)

type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt
struct-declarator-list: (§3.5.2.1)

struct-declarator
struct-declarator-list , struct-declarator
struct-declarator: (§3.5.2.1)

declarator
declaratoropt :constant-expression
enum-specifier: (§3.5.2.2)

enum identifieropt {enumerator-list }
enum identifieropt {enumerator-list , }
enum identifier
enumerator-list: (§3.5.2.2)

enumerator
enumerator-list , enumerator
enumerator: (§3.5.2.2)

enumeration-constant
enumeration-constant = constant-expression
type-qualifier: (§3.5.3)

const
volatile
declarator: (§3.5.4)

pointeropt direct-declarator
direct-declarator: (§3.5.4)

identifier
( declarator )
direct-declarator [constant-expressionopt ]
direct-declarator ( parameter-type-list )
direct-declarator (identifier-listopt )
pointer: (§3.5.4)

* type-qualifier-listopt
* type-qualifier-listoptpointer
type-qualifier-list: (§3.5.4)

type-qualifier
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type-qualifier-list type-qualifier
parameter-type-list: (§3.5.4)

parameter-list
parameter-list , ...
parameter-list: (§3.5.4)

parameter-declaration
parameter-list , parameter-declaration
parameter-declaration: (§3.5.4)

declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt
identifier-list: (§3.5.4)

identifier
identifier-list , identifier
type-name: (§3.5.5)

specifier-qualifier-list abstract-declaratoropt
abstract-declarator: (§3.5.5)

pointer
pointeropt direct-abstract-declarator
direct-abstract-declarator: (§3.5.5)

( abstract-declarator )
direct-abstract-declaratoropt [constant-expressionopt ]
direct-abstract-declaratoropt (parameter-type-listopt )
typedef-name: (§3.5.6)

identifier
initializer: (§3.5.7)

assignment-expression
{ initializer-list }
{ initializer-list , }
initializer-list: (§3.5.7)

initializer
initializer-list , initializer

A.2.3. Statements
statement: (§3.6)

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
labeled-statement: (§3.6.1)

identifier : statement
case constant-expression : statement
default : statement
compound-statement: (§3.6.2)

{ declaration-listopt statement-listopt }
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declaration-list: (§3.6.2)

declaration
declaration-list declaration
statement-list: (§3.6.2)

statement
statement-list statement
expression-statement: (§3.6.3)

expressionopt ;
selection-statement: (§3.6.4)

if ( expression ) statement
if ( expression ) statement else statement
switch ( expression) statement
iteration-statement: (§3.6.5)

while ( expression ) statement
do  statement  while ( expression ) ;
for (  expressionopt ;expressionopt ;expressionopt ) statement
jump-statement: (§3.6.6)

goto identifier ;
continue ;
break ;
return expressionopt ;

A.2.4. External Definitions
translation-unit: (§3.7)

external-declaration
translation-unit external-declaration
external-declaration: (§3.7)

function-definition
declaration
function-definition: (§3.7.1)

declaration-specifiersoptdeclarator declaration-listoptcompound-statement

A.3. Preprocessing Directives
preprocessing-file: (§3.8)

groupopt
group: (§3.8)

group-part
group group-part
group-part: (§3.8)

pp-tokensopt new-line
if-section
control-line
if-section: (§3.8.1)

if-group elif-groupsoptelse-groupopt endif-line
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if-group: (§3.8.1)

#if constant-expression new-line groupopt
#ifdef identifier new-line groupopt
#ifndef identifier new-line groupopt
elif-groups: (§3.8.1)

elif-group
elif-groups elif-group
elif-group: (§3.8.1)

#elif constant-expression new-line groupopt
else-group: (§3.8.1)

#else new-line groupopt
endif-line: (§3.8.1)

#endif new-line
#include pp-tokens new-line (§3.8.2)
#define identifier replacement-list new-line (§3.8.3)
#define identifier (identifier-list)opt  replacement-list new-line (§3.8.3)
#undef identifier new-line (§3.8.3)
#line pp-tokens new-line (§3.8.4)
#error pp-tokensopt new-line (§3.8.5)
#pragmapp-tokensopt new-line (§3.8.6)
# new-line (§3.8.7)
lparen: (§3.8.3)

the left parenthesis character without preceding white space
replacement-list: (§3.8.3)

pp-tokensopt
pp-tokens: (§3.8)

preprocessing-token
pp-tokens preprocessing-token
new-line: (§3.8)

the new-line character
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Appendix B. ANSI Conformance
Summary
VSI C conforms to the ANSI standard for the Programming Language C, as specified by the X3J11 Technical
Committee and documented in the American National Standard for Information Systems – Programming
Language C (document number: X3.159-1989). VSI C has successfully passed the Plum-Hall test suite for ANSI
conformance. In strict ANSI C mode, the VSI C compiler is a conforming implementation as described by the
ANSI C Standard in Section 1.7, Compliance:   “ A conforming hosted implementation shall accept any strictly
conforming program. A conforming implementation can have extensions (including additional library functions),
provided they do not alter the behavior of any strictly conforming program.”

The ANSI C Standard defines a strictly conforming program as:

“A strictly conforming program shall use only those features of the language and library specified in this Standard.
It shall not produce output dependent on any unspecified, undefined, or implementation-defined behavior, and
shall not exceed any minimum implementation limit.”

“An implementation shall be accompanied by a document that defines all implementation-defined characteristics
and all extensions.”

As with most language definitions, the ANSI C Standard does not encompass the entire definition of the C language
available within an implementation. The C implementations currently supported by HPE include a number of
features that are not defined in the ANSI C Standard.

The rest of this section describes the compiler's functionality in a format mirroring the outline of the ANSI C
Standard. The relevant ANSI C Standard section number is shown in parentheses following each heading. If a
heading from the ANSI C Standard is missing from this description, VSI C conforms to the Standard exactly,
without extension or implementation-defined behavior.

The following sections document only the extensions and implementation-defined portions of the VSI C language.
Together with the ANSI C Standard, this section completely specifies the VSI C implementation of the C language.
The ANSI C Standard is referred to as “the Standard” throughout this appendix.

B.1. Diagnostics (§2.1.1.3)
A diagnostic message is produced for the first violation of a syntax rule or constraint specified in the Standard.
Subsequent violations are reported if they are not hidden by previous violations.

B.2. Hosted Environment (§2.1.2.2)
The semantics of the arguments to main(), including envp, are determined by the programming environment.
See your platform-specific VSI C documentation for information on arguments to main().

B.3. Multibyte Characters (§2.2.1.2)
The shift states used for the encoding of multibyte characters are dependent on translation tables available on
the local system. A particular character set is supported by the language if the local system's translation tables
support it. 

B.4. Escape Sequences (§2.2.2)
Elements within a character constant or string literal of the source character set are mapped directly into the
elements of the execution character set. Escape sequences other than those defined by the Standard are diagnosed
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with a warning and the backslash is ignored, so that the character constant's or string literal's value is the same
as if the backslash were not present.

B.5. Translation Limits (§2.2.4.1)
Translation limits vary across platforms because of differences in the underlying machine architecture and
operating systems. Otherwise, VSI C avoids imposing translation limits.

The following lists show the only limits imposed in VSI C. Translation limits listed in the Standard, but not in
the following list, are not imposed in VSI C:

• 32,767 characters in an internal identifier or a macro name

• 32,767 characters in a logical or physical source line

• 32,767 bytes in the representation of a string literal (this limit does not apply to string literals formed as a result
of concatenation)

On Tru64 UNIX systems:

• 1023 significant initial characters in an external identifier. A warning is issued if such an identifier is truncated.

On OpenVMS systems:

• 31 significant initial characters in an external identifier. A warning is issued if such an identifier is truncated.

• 253 actual arguments or formal parameters to a function.

• 1012 bytes in a function argument list.

B.6. Numerical Limits (§2.2.4.2)
VSI C's numerical limits are defined in the limits.h and float.h header files. These header files contain the
implementation-defined values so that the following descriptions hold:

• There are 8 bits in a character of the execution character set.

• The representation and set of values for the type char are the same as that of type signed char. This
equivalence can be changed from signed char to unsigned char with a command-line option.

• On OpenVMS systems, the representation and set of values for the types int and signed int are the same
as that for type long (32 bits).

• On OpenVMS systems, the representation and set of values for the type unsigned int are the same as that
for type unsigned long (32 bits).

• On Tru64 UNIX systems, the long int and unsigned long int types are 64 bits, while int and
unsigned int are 32 bits.

• The representation and set of values for the type long double are the same as that for type double (64 bits).

Any limits not found in the previous list are defined as shown in the Standard.

B.7. Keywords (§3.1.1)
The __inline, __unaligned, and __restrict keywords are supported on OpenVMS Alpha systems and
Tru64 UNIX systems.

All VAX C keywords are supported in VAX C mode. They are:

• _align
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• globaldef

• globalref

• globalvalue

• noshare

• readonly

• variant_struct

• variant_union

The following keywords are accepted on Tru64 UNIX systems, but result in a warning:

• _align

• noshare

• readonly

On Tru64 UNIX systems, globaldef and initialized globalvalue declarations are treated as external
definitions. globalref and uninitialized globalvalue declarations are treated as if they were declared
extern.

Note
The MAIN_PROGRAM option is also available with the VAX C compatibility option on OpenVMS systems.

B.8. Identifiers (§3.1.2)
An identifier can include the character dollar sign ($). (A warning is given for this in strict ANSI mode.)

On Tru64 UNIX systems, case distinctions are always significant in an identifier with external linkage.

On OpenVMS systems, all identifier names with external linkage are converted to uppercase by default, but this
can be controlled with a command-line option.

B.9. Linkages of Identifiers (§3.1.2.2)
An error is reported if, within a translation unit, the same identifier appears with both internal and external linkage.

B.10. Types (§3.1.2.5)
The type char and the type signed char have the same representation and set of values. (If the unsigned
compile-time option is specified, then the types char and unsigned char have the same representation and
set of values.)

B.11. Integer Constants (§3.1.3.2)
The digits 8 and 9 are permitted as valid octal digits in common C and VAX C modes, but a warning message
is issued.

B.12. Character Constants (§3.1.3.4)
A character constant containing more than one character or wide character is diagnosed with a warning under the
error-checking compiler option and is stored as an integer value. A character constant with more than one character
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is represented with the last character in the low-order byte for compatibility with common C. Representation of an
integer character constant containing an octal or hexadecimal escape sequence not in the basic execution character
set is the value specified by the octal or hexadecimal number in the escape sequence. (Its value is interpreted as a
signed or unsigned char, depending on whether the unsigned compile-time option is in effect.)

The type of a wide character constant, wchar_t, is unsigned int.

B.13. String Literals (§3.1.4)
The Standard states that identical string literals need not be distinct, and any attempt to modify a string literal is
undefined.  Therefore, it is an error to modify either a character-string literal or wide-string literal.

B.14. Operators – Compound Assignment
(§3.1.5)
The old form of compound assignment operators (such as =+, =-, =*, =/, and =%) are not defined in the Standard.
Therefore, in expressions of the form expression =unary_op expression, where the =unary_op would previously
have been interpreted as an assignment operator, the =unary_op is now interpreted as two tokens: the assignment
operator and the unary_op.

A warning message is issued if the error-checking option is specified for =-, =*, =& and =+ (with no intervening
white space) to remind you of this change in meaning. Without the error-checking option, no message is issued.

B.15. Characters and Integers – Value-
Preserving Promotions (§3.2.1.1)
Two different approaches to the implementation of integer promotion rules have been taken by earlier versions
of C. The first approach is called unsigned preserving, in which unsigned char and unsigned short
widen to unsigned int.  The second approach is called value preserving, in which unsigned char and
unsigned short widen to signed int if the value can be represented; otherwise they widen to unsigned
int. The Standard specifies that integer promotions are to be value-preserving. This approach is followed in all
modes except common C and VAX C mode, and results in a quiet change to programs depending on unsigned-
preserving arithmetic conversions.

To aid the programmer in locating arithmetic conversions that depend on unsigned-preserving rules, any integer
promotions of unsigned char and unsigned short to int that could be affected by the value-preserving
approach for integer promotions are flagged with the error-checking option.

B.16. Signed and Unsigned Integer
Conversions (§3.2.1.2)
If the value of an integer demoted to a signed integer is too large to be represented, the result is truncated with
excess high-order bits discarded. This is compatible with common C and VAX C.  

Conversions between signed and unsigned integers of the same size involve no representation change.

B.17. Floating and Integral Conversions
(§3.2.1.3)
When an integer is converted to a floating-point number that cannot be represented exactly, the result of the
conversion is the nearest value that can be represented exactly. This result is the natural result of the conversion
on the hardware, and can be higher or lower than the original value.
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When a floating-point number is converted at compile time to an integer or another floating-point type, and the
result cannot be represented, the compiler issues a diagnostic message.

When an integral number or double floating-point number is converted to a floating-point number that cannot
exactly represent the original value, the result is rounded to the nearest value of type float. (For details, see
the architecture manual for your platform; for example, the MIPS R-Series Processor Architecture Manual or the
VAX Architecture Manual.)

When demoting a double value to float, if the value being converted is in the range of values that can be
represented, but not represented exactly, the result is the nearest higher or lower value. VSI C rounds the result
to the nearest representable float value.

Similar rounding is performed for demotions from long double to double or float.

B.18. Pointer Conversions (§3.2.2.3)
Even if two types have the same representation (such as int and long), they are still different types. This means
that a pointer to int cannot be assigned to a pointer to long without using a cast operation. 

This rule is relaxed in the common C and VAX C modes. Pointer conversions do not involve a representation
change, but, because of alignment restrictions on some machines, access through an unaligned pointer can result
in much slower access time, a machine exception, or unpredictable results.

B.19. Structure and Union Members (§3.3.2.3)
The result of accessing a union member different than the member holding a value depends on the data types of
the members and their alignment within the union.

B.20. The sizeof Operator (§3.3.3.4)
The type of the sizeof operator is size_t. VSI C defines this type, which is the type of integer required to
hold the maximum size of an array, in the <stddef.h> header as unsigned int.

B.21. Cast Operators (§3.3.4)
The Standard specifies that a pointer can be converted to an integral type, but the size of the integer required and
the result are implementation-defined.  A pointer occupies the same amount of storage as objects of type int or
long (or their unsigned equivalents). Therefore, a pointer can be converted to any of these integer types and
back again without changing its value. No scaling takes place, and the representation of the value does not change.

Converting between a pointer and a shorter integer type, such as char, is similar to the conversion between an
object of unsigned long type and a shorted integer type. The high-order bits of the pointer are discarded.
Converting between a shorter integer and a pointer is similar to the conversion between the shorter integer type
and unsigned long. The high-order bits of the pointer are filled with copies of the sign bit if the shorter integer
type was signed. Messages are issued for cast operations of these types under the error-checking compiler option.

B.22. Multiplicative Operators (§3.3.5)
The Standard does not provide portable semantics for the division and remainder operators.  VSI C follows these
semantics:

• If either operand of the division operator (/) is negative, the result is truncated toward zero (the largest integer
of lesser magnitude than the algebraic quotient)

• If either operand of the remainder operator (%) is negative, the sign of the result is the same as the sign of the
first operand (for common C, MIPS C, and VAX C compatibility)
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The compiler issues a warning in the following cases of undefined behavior detected at compile time:

• Integer overflow

• Division by zero

• Remainder by zero

B.23. Additive Operators (§3.3.6)
Pointers to members of the same array can be subtracted. The result is the number of elements between the two
array members. The type of the result is ptrdiff_t. VSI C defines this type as int.

B.24. Bitwise Shift Operators (§3.3.7)
The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has a signed type, the value of the result is the
shifted value of E1 with the vacated high-order bits filled with a copy of E1's sign bit (arithmetic shift).

B.25. Storage-Class Specifiers (§3.5.1)
The register storage-class specifier suggests that access to the object be as fast as possible. Specifying
register is intended to give a variable an increased probability of being stored in a register. However, compiler
register allocation techniques make using the register keyword obsolete. That is, VSI C accepts and ignores
all register requests.

B.26. Type Specifiers (§3.5.2)
The combination long float is supported as a synonym for double for compatibility with common C and
VAX C. This combination results in a warning if compiled with the default mode or the strict ANSI mode.

B.27. Structure and Union Specifiers
(§3.5.2.1)
The high-order bit position of an int bit field is not treated as a sign bit, except in the VAX C compatibility mode.
In other words, the type int designates the same type as unsigned int for all bit-field types. In VAX C mode,
the type int designates the same type as signed int for all bit-field types.

B.28. Variant Structures and Unions
Variant structures and unions are VAX C extensions that allow nested structures and unions to be declared as
members of the enclosing aggregate. This eliminates the need to specify an intermediate qualifier when referring
to those members. These capabilities are only available in VAX C mode.

Your platform-specific VSI C documentation contains details about these extensions.

B.29. Structure Alignment
The alignment and size of a structure is affected by the alignment requirements and sizes of the structure
components for each platform. A structure can begin on any byte boundary and occupy any integral number of
bytes. However, individual architectures or operating systems can specify particular default alignment and padding
requirements, which can be overridden by pragmas and command-line options.
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OpenVMS Alpha and Tru64 UNIX
On OpenVMS Alpha and Tru64 UNIX systems, nonbit-field structure members are, by default, aligned on natural
boundaries.

The default alignment of a structure is the maximum alignment required by any member within the structure. The
structure is padded to ensure that the size of a structure, in bytes, is a multiple of its alignment requirement to
achieve the appropriate alignment when the structure or union is a member of an array.

The components of a structure are laid out in memory in the order they are declared. The first component has
the same address as the entire structure. Padding is introduced between components to satisfy the alignment
requirements of individual components.

A bit field can have any integral type. However, the compiler issues a warning with the error-checking option if
the type is anything other than int, unsigned int, or signed int. The presence of bit fields causes the
alignment of the whole structure or union to be at least the same as that of the bit field's base type.

Bit fields (including zero-length bit fields) not immediately declared following other bit fields have the alignment
requirement imposed by their base type. Bit fields are allocated within the alignment unit (of the same size as the
bit field's base type) from low-order to high-order.

With #pragma member_alignment in effect, if a bit field immediately follows another bit field, the bits are
packed into adjacent space in the same unit, if sufficient space remains. Otherwise, padding is inserted at the end
of the first bit field and the second bit field is put into the next unit.

With #pragma nomember_alignment in effect, bit fields are allowed to span storage unit boundaries. Alpha
systems default to member_alignment while VAX systems default to nomember_alignment.

Bit fields of base type char cannot be larger than 8 bits. Bit fields of base type short cannot be larger than 16 bits.

OpenVMS VAX
OpenVMS VAX systems do not require that structures or structure members be aligned on any particular
boundaries; nonbit-field structure members are byte-aligned by default.

The components of a structure are laid out in memory in the order they are declared. The first component has
the same address as the entire structure. Each additional component follows its predecessor in the immediately
following byte.

Natural alignment of structure members, can be obtained by using the following pragma:

pragma member_alignment

The VSI C User's Guide for OpenVMS Systems has examples and diagrams of OpenVMS VAX structure
alignment.

Bit fields can have any integral type. However, the compiler issues a warning if /STANDARD=ANSI89 is specified,
and the type is other than int, unsigned int, or signed int. Bit fields are allocated within the unit from
low order to high order. If a bit field immediately follows another bit field, the bits are packed into adjacent space,
even if this overflows into another byte. However, if an unnamed bit field is specified to have length 0, filler is
added so the bit field immediately following starts on the next byte boundary.

The VSI C User's Guide for OpenVMS Systems has examples and diagrams of OpenVMS VAX bit-field alignment.

B.30. Enumeration Specifiers (§3.5.2.2)
The Standard specifies that each enumerated type be compatible with an implementation-defined integer type. In
VSI C, each enumerated type is compatible with the signed int type.
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B.31. Type Qualifiers (§3.5.3)
The volatile storage class is specified for those variables that can be modified in ways unknown to the compiler.
Thus, if an object is declared volatile, every reference to the object in the source code results in a reference to
memory in the object code.

B.32. Declarators (§3.5.4)
There is no internal limit on the number of pointer, function or array declarators that can modify an arithmetic,
structure, union, or incomplete type.

B.33. Initialization (§3.5.7)
C allows initializers to be optionally surrounded by braces ( { } ) when they are not logically necessary. This has
resulted in aggregate initializers with partially ignored braces that are parsed differently depending on the type of
parser implemented (bottom-up or top-down). The Standard has specified the top-down parse originally specified
in Kernighan and Ritchie's The C Programming Language. Programs depending on a bottom-up parse (common C
parse) of partially braced initializers can yield unexpected results. Even though this construct is allowed, a warning
message is given to inform the user of ignored braces when in common C mode or if using the check option.

B.34. The switch Statement (§3.6.4.2)
There is no limit on the number of case labels in a switch statement. 

B.35. External Object Definitions (§3.7.2)
In common C mode, all extern objects have file scope.

B.36. Conditional Inclusion (§3.8.1)
Previous preprocessors have allowed extraneous text after a preprocessor directive. For example:

        #endif system1

However, the Standard has stated that the only text allowed after a preprocessing directive is a comment. Therefore,
the VSI C compiler issues a warning message if this syntax rule is violated.

The numeric value for character constants within #if and #elif directives matches the value obtained when an
identical character constant occurs in expressions that are not part of these directives.

B.37. Source File Inclusion (§3.8.2)
Source files can be included using either a quoted path name (#include "stdio.h") or bracketed path names
(#include <stdio.h>). OpenVMS systems also support a method of including modules from a text library.
 See your platform-specific VSI C documentation for the search-path algorithm for including source files.

B.38. Macro Replacement – Predefined Macro
Names (§3.8.3)
In addition to the predefined macro names defined in the Standard, the VSI C compiler defines other preprocessor
macros for various identification purposes. When the compiler is invoked, the appropriate identification macros
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are defined depending on the operating system, architecture, language, compiler mode, and other environment
variables. You can reference these macros in #ifdef preprocessor directives to isolate code that applies to a
particular environment.

Each VSI C platform can have additional predefined macros. See your platform-specific VSI C documentation
for more information.

Table B.1, “Tru64 UNIX Predefined Macro Names” shows the predefined macro names for Tru64 UNIX.

Table B.1. Tru64 UNIX Predefined Macro Names

 Macro Name

unix
__unix__
__osf
SYSTYPE_BSD

Operating system name:

_SYSTYPE_BSD
Architecture name: __alpha

__DECC
__DECC_VER
LANGUAGE_C

Product name:

__LANGUAGE_C__

Table B.2, “OpenVMS VAX, OpenVMS Alpha, and I64 Predefined Macro Names” shows the predefined macro
names for OpenVMS VAX and Alpha systems. All forms are defined unless strict ANSI mode is in effect, in which
case only the new spellings are defined.

Table B.2. OpenVMS VAX, OpenVMS Alpha, and I64 Predefined Macro Names

 New Spelling Traditional Spelling

__vms vms
__VMS VMS
__vms_version vms_version

Operating system name:

__VMS_VERSION VMS_VERSION
__vax (VAX) vax (VAX)
__VAX (VAX) VAX (VAX)
__alpha (Alpha) –
__ALPHA (Alpha) –
__Alpha_AXP (Alpha) –
__IA64 (I64) –
__IA64__ (I64) –

Architecture name:

__32BITS (Alpha) –
__vaxc vaxc
__VAXC VAXC
__vax11c vax11c
__VAX11C VAX11C
__STDC__ –

Product name:

__DECC –
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 New Spelling Traditional Spelling

__DECC_VER –
__VMS_V6_RTL_COMPAT –
__DECC_MODE_STRICT –
__DECC_MODE_RELAXED –
__DECC_MODE_VAXC –

Compiler Mode:

__DECC_MODE_COMMON –
__D_FLOAT –
__G_FLOAT –
__IEEE_FLOAT (Alpha) –

Floating-Point:

__X_FLOAT (Alpha) –
__HIDE_FORBIDDEN_NAMES –Other:
__INITIAL_POINTER_SIZE
(Alpha)

–

You can explicitly define the macros in Table B.3, “Library Routine Standards Conformance Macros – All
platforms” to control which C library routines are declared in header files and to obtain standards conformance
checking. To define these macros use one of the following:

• -D flag (T64 UNIX)

• /DEFINE qualifier (OVMS)

• #define preprocessor directive

Table B.3. Library Routine Standards Conformance Macros – All platforms

Macro Standard

_XOPEN_SOURCE_EXTENDED XPG4-UNIX
_XOPEN_SOURCE XPG4
_POSIX_C_SOURCE POSIX
_ANSI_C_SOURCE ISO C and ANSI C
_AES_SOURCE (T64 UNIX) Application Environment Services
_OSF_SOURCE (T64 UNIX) OSF compatibility
_VMS_V6_SOURCE (OVMS) OpenVMS Version 6 compatibility
_DECC_V4_SOURCE (OVMS) DEC C Version 4 compatibility

B.39. The ## Operator (§3.8.3.3)
The ## operator within a macro replacement list causes the two tokens on either side of the operator to be
concatenated into a single token.

In common C and VAX C compatibility mode, comments can also concatenate two tokens because in these modes
a comment is replaced by a null string after macro invocations.

This behavior is not supported in strict ANSI or default mode, where comments are replaced with a single space.

B.40. Error Directive (§3.8.5)
The #error directive causes an error message to be issued and the compilation to cease.
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B.41. Pragma Directive (§3.8.6)
The Standard's approved method of adding extensions to the language is through the addition of pragmas. All
unrecognized pragmas are diagnosed with an informational message. Supported pragmas vary across platforms.
See your platform-specific VSI C documentation for more information.

When only preprocessing a file, all pragmas recognized by VSI C are written unaltered to the output.

B.42. Function Inline Expansion
Function inline expansion eliminates procedure-call overhead and allows general optimization methods to apply
across the expanded code. Function inlining has advantages over macros in that arguments are evaluated only once,
parentheses need not be overused to avoid problems with precedence, and the actual expansion can be controlled
from the command line.

The following pragmas are provided to control function inline expansion:

#pragma inline (function_name [,function_name....])
#pragma noinline (function_name [,function_name....])

If a function is named in an inline directive, calls to it are expanded as inline code, if the function has the
following properties:

• If a function is named in a noinline directive, calls to it are not expanded as inline code.

• If a function is not named in an inline or a noinline directive, the compiler uses a heuristic to perform
inline expansion of calls where appropriate.

• The compiler issues an error if a function is named in both an inline and a noinline directive.

If the noinline compiler option is used, it overrides all inline pragma directives.

Inline functions have the following properties:

• An inline function can be recursive, but only one level of inline expansion is performed if it is.

• Only calls from the source file containing the definition of the inlined function are expanded inline.

• The address of an inline function can be taken and expressions that imply the conversion of the inlined function
name to an address are allowed.

• The use of the varargs package (allowing a function to take a variable number of arguments) is not allowed
for inline functions.

• An inline function cannot be declared with an ellipsis in its argument list.

B.43. Linkage Pragmas
VSI C supports the #pragma linkage and #pragma use_linkage preprocessor directives on OpenVMS
Alpha systems.

These pragmas are used for defining special linkage characteristics and to associate these linkage characteristics
with functions. See your platform-specific VSI C documentation for more information.

B.44. Other Pragmas
The following pragmas are provided for VAX C compatibility mode only:
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        #pragma dictionary CDD_path
        #pragma module title ident

These pragmas correspond to the #dictionary and #module directives, respectively.

See your platform-specific VSI C documentation for additional pragmas supported on your system.
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Appendix C. ASCII Equivalence Table
Figure C.1, “ASCII Equivalence Chart” shows the ASCII character set. Each character's octal, decimal, and
hexadecimal value is shown.

Figure C.1. ASCII Equivalence Chart
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Appendix D. Common C Extensions
Supported by VSI C
 VSI C supports several common C (old-style C) extensions to ANSI-standard C. These extensions are recognized
only when the common C compatibility option is used on the compiler command line. The common C extensions
allow you to use the c89 compiler to compile code originally written for the portable C compiler (pcc).

The following sections describe the common C extensions available with the common C compatibility option.
Extensions to the ANSI-standard C language are divided into two categories:

• Extensions compatible with ANSI C programs that produce diagnostic messages when compiled without the
common C compatibility option

• Extensions incompatible with ANSI C programs, which could produce different compiler behavior when used
without the common C compatibility option

D.1. Extensions Compatible with ANSI C
• Relaxed pointer and pointer/integer compatibility is allowed. That is, all pointer and integer types are

compatible, and pointer types are compatible with each other regardless of the type of object they point to.
Therefore, under the common C option, a pointer to float is compatible with a pointer to int. 

• The digits 8 and 9 are valid in octal integer constants. (A warning message is issued by the compiler, however.)

• Bit-field data types may include enum, short, char, and long. The ANSI C Standard allows only int,
unsigned int, or signed int. 

• long float is recognized as a synonym for double.

• A third argument to the function main(), namely char *envp[], is allowed.

 When VSI C is run in common C compatibility mode, the main function can accept a third parameter,
the environment array envp. This array contains process information such as the user name and controlling
information, and has no bearing on passing command-line arguments. Its primary use is during exec and
getenv library function calls.

See your platform-specific VSI C documentation for more information about invoking the main function within
your host environment.

• Text is allowed following the preprocessing directives #else and #endif.

• Address constants may be cast to int.

• Tentative definitions that exist at the completion of a compilation remain tentative to the linker, in accordance
with the traditional model of definition resolution.

• Casts that do not cause a change in representation are legal as lvalues.

• Implicit function declarations are created at file level, rather than at block level.

• The types int and long are compatible.

• Taking the address of a variable with the register storage class is allowed.

• Block-level declarations of functions with static storage class are allowed.

• In array types, the element types are allowed to be incomplete.
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• The type of a tentatively-defined variable is allowed to be incomplete at the end of the compilation unit. A
warning is issued for this case.

• Values in case labels are allowed to have a pointer type.

• Trailing (extra) commas are allowed in enumeration lists.

• The semicolon following the last structure or union member may be omitted.

• Carriage returns are accepted and treated as white space.

D.2. Extensions Incompatible with ANSI C
• Unsigned preserving rules apply. (unsigned char and unsigned short promote to unsigned int.)

• Comments are converted to no spaces instead of a single space to allow token concatenation. (The compiler
attempts to concatenate the two adjacent tokens.)

• All extern objects have file scope.

• Macro parameters are recognized and replaced within string or character constants in the macro definition.

• During macro replacement, an argument's preprocessing tokens are not macro replaced before the macro is
expanded.

If the name of a macro being replaced is found during the rescan of the replacement list, it is macro replaced.

• Support for predefined macro names that do not conform to the ANSI C Standard (that is, that do not start with
two underscores or an underscore followed by a capital letter).

• A preprocessor directive is only recognized as such if the beginning # character occurs in the first column of a
line. Any preprocessor directives preceded by white space are ignored.

• #ifdef is treated as "#if defined"

• #ifndef is treated as "#if !defined"

• Comments in macro replacement lists behave like ## operators when a valid token results after concatenation,
except that adjoining white space is not deleted. If the resulting token is not valid, the comment in a macro
replacement is deleted.

• Trigraphs are not recognized and replaced.
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Appendix E. VAX C Extensions
Supported by VSI C
VSI C supports several VAX C extensions to ANSI-standard C. These extensions are recognized only when the
VAX C compatibility option is used on the compiler command line. The VAX C extensions allow you to use the
VSI C compiler to compile code originally written for the VAX C compiler.

The following sections describe the VAX C extensions available with the VAX C compatibility option. Extensions
to the ANSI-standard C language are divided into two categories:

• Extensions compatible with ANSI C programs that produce diagnostic messages when compiled without the
VAX C compatibility option

• Extensions incompatible with ANSI C programs, which could produce different compiler behavior when used
without the VAX C compatibility option

E.1. Extensions Compatible with ANSI C
• VAX C specific pragmas are recognized.

• Relaxed pointer and pointer/integer compatibility is allowed. That is, all pointer and integer types are
compatible, and pointer types are compatible with each other regardless of the type of object they point to.
Therefore, under the VAX C option, a pointer to float is compatible with a pointer to int.

• The #module directive is allowed. (On Tru64 UNIX systems this directive produces a warning message and
is ignored.)

• The #dictionary directive is allowed. (On Tru64 UNIX systems this directive produces a warning message
and is ignored.)

• The module form of #include is allowed. (On Tru64 UNIX systems the module form of this directive
produces an error.)

• Specifying int for the type of a bit field is equivalent to specifying signed int in VAX C mode.

• Built-in functions are recognized.

• The main_program option may be used to identify a particular function as the main function for a given
program.

When compiling in VAX C mode, another way to specify the main function in a program is to include the
following option in the function definition: 

main_program

 This option is not a keyword, and it can be written uppercase or lowercase. The main_program option is
useful for allowing a name other than main for the main program.

In a prototype-style function definition, include main_program between the function declaration part and
the left brace, as in the following example:

char lower(int c_up)
main_program
{
⋮
}
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In an old-style function definition, include main_program in the same place as in the prototype style, but
before any parameter declarations, as in the following example:

char lower(c_up)
main_program
int c_up;
{
⋮
}

Both examples establish the function lower as the main function; execution begins there, regardless of the
order in which the functions are linked.

• Bit-field data types may include enum, short, char, and long. The ANSI C standard allows only int,
unsigned int, or signed int.

• The last member of a structure may be an array with no size specified.

• Two struct types or two union types are considered the same type if their sizes are the same.

• Block-level declarations of functions with static storage class are allowed.

• The address of a constant may be passed to a function.

• Taking the address of a variable with register storage class is allowed.

• A third argument to the function main(), namely char *envp[], is allowed.

 When VSI C is run in VAX C compatibility mode, the main function can accept a third parameter, the
environment array envp. This array contains process information such as the user name and controlling
information, and has no bearing on passing command-line arguments. Its primary use is during exec and
getenv library function calls.

See your platform-specific VSI C documentation for more information about invoking the main function within
your host environment.

• long float is recognized as a synonym for double.

• Character constants containing multiple characters are packed in little endian order. For example, 'AB' is treated
as 'B' << 8 + 'A' instead of 'A' << 8 + 'B'.

• Trailing (extra) commas are allowed in enumeration lists.

• The element type of an array may be incomplete.

• Carriage returns are accepted and treated as white space.

E.2. Extensions Incompatible with ANSI C
• Unsigned preserving rules apply. (unsigned char and unsigned short promote to unsigned int.)

• VAX C-specific predefined macros are recognized.

• VAX C-specific keywords are recognized.

• Macro parameters are recognized and are replaced as string or character constants in the macro definition.

• Comments are converted to no spaces instead of a single space to allow token concatenation. (The compiler
attempts to concatenate the two adjacent tokens.)
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• Comments in macro replacement lists behave like ## operators when a valid token results after concatenation,
except that adjoining white space is not deleted. If the resulting token is not valid, the comment in a macro
replacement is deleted.

• Trigraphs are not recognized or replaced.

• Variant structures and unions are allowed.

Variant structure and union declarations allow reference to members of nested aggregates without having to
refer to intermediate structure or union identifiers. When a variant structure or union declaration is nested within
another structure or union declaration, the enclosed variant aggregate ceases to exist as a separate aggregate,
and VSI C copies its members to the enclosing aggregate.

Variant structures and unions are declared using the variant_struct and variant_union keywords.
The format of these declarations is the same as that for regular structures or unions, with the following
exceptions:

• Variant aggregates must be nested within other valid structure or union declarations.

• A tag cannot be used in a variant aggregate declaration.

• At least one member must be declared in the variant aggregate declaration, and it may not be declared as a
pointer or an array.

Initialization of a variant structure or union is the same as that of a normal structure or union.

With the VAX C compatibility option, two structures or unions in an assignment operation need only have the
same size, rather than requiring the same members and member types.

The following example shows the format of a variable structure declaration, and how to reference members of
a variant structure:

#include <stdio.h>
enum packet_type {TEXT, INTEGER};

/* This structure can contain either a text_packet  or an integer value. 
  
   It can only contain one of these at a time, since they share the same
   storage. */  

struct packet 
{
    enum packet_type type;
    variant_union 
    {
        variant_struct 
        {    
            int str_size;
            char *text;
        } text_packet;
        variant_struct
        {
          int value;
        } value_packet;
     
     } text_or_int;
} packet = {TEXT, 24 ,"I love the color purple"}; 

main()
{
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    if (packet.type == TEXT)
        printf(" %s. \n",packet.text);
    else 
        printf(" %d \n", packet.value);

    packet.type = INTEGER;
    packet.value = 42;

    printf(" The meaning of life, the universe, and everything is: %d.
 \n",
packet.value);

}
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The following table lists the hexadecimal code values that are valid in universal character names in identifiers.
Ranges that are part of the basic character sets are omitted.

Latin:         00AA, 00BA, 00C0-00D6, 00D8-00F6,  00F8-01F5,
               01FA-0217,  0250-02A8,  1E00-1E9B, 1EA0-1EF9,
               207F

Greek:         0386, 0388-038A, 038C, 038E-03A1,  03A3-03CE,
               03D0-03D6, 03DA, 03DC, 03DE, 03E0, 03E2-03F3,
               1F00-1F15, 1F18-1F1D,  1F20-1F45,  1F48-1F4D,
               1F50-1F57,   1F59,   1F5B,  1F5D,  1F5F-1F7D,
               1F80-1FB4, 1FB6-1FBC,  1FC2-1FC4,  1FC6-1FCC,
               1FD0-1FD3,  1FD6-1FDB,  1FE0-1FEC, 1FF2-1FF4,
               1FF6-1FFC

Cyrillic:      0401-040C, 040E-044F,  0451-045C,  045E-0481,
               0490-04C4,  04C7-04C8,  04CB-04CC, 04D0-04EB,
               04EE-04F5, 04F8-04F9

Armenian:      0531-0556, 0561-0587

Hebrew:        05B0-05B9,   05BB-05BD,   05BF,    05C1-05C2,
               05D0-05EA, 05F0-05F2

Arabic:        0621-063A,  0640-0652,  0670-06B7, 06BA-06BE,
               06C0-06CE, 06D0-06DC, 06E5-06E8, 06EA-06ED

Devanagari:    0901-0903, 0905-0939,  093E-094D,  0950-0952,
               0958-0963

Bengali:       0981-0983,  0985-098C,  098F-0990, 0993-09A8,
               09AA-09B0,   09B2,   09B6-09B9,    09BE-09C4,
               09C7-09C8,  09CB-09CD,  09DC-09DD, 09DF-09E3,
               09F0-09F1

Gurmukhi:      0A02,   0A05-0A0A,   0A0F-0A10,    0A13-0A28,
               0A2A-0A30,  0A32-0A33,  0A35-0A36, 0A38-0A39,
               0A3E-0A42, 0A47-0A48,  0A4B-0A4D,  0A59-0A5C,
               0A5E, 0A74

Gujarati:      0A81-0A83,    0A85-0A8B,   0A8D,   0A8F-0A91,
               0A93-0AA8, 0AAA-0AB0,  0AB2-0AB3,  0AB5-0AB9,
               0ABD-0AC5, 0AC7-0AC9, 0ACB-0ACD, 0AD0, 0AE0

Oriya:         0B01-0B03,  0B05-0B0C,  0B0F-0B10, 0B13-0B28,
               0B2A-0B30, 0B32-0B33,  0B36-0B39,  0B3E-0B43,
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               0B47-0B48, 0B4B-0B4D, 0B5C-0B5D, 0B5F-0B61

Tamil:         0B82-0B83,  0B85-0B8A,  0B8E-0B90, 0B92-0B95,
               0B99-0B9A,   0B9C,   0B9E-0B9F,    0BA3-0BA4,
               0BA8-0BAA,  0BAE-0BB5,  0BB7-0BB9, 0BBE-0BC2,
               0BC6-0BC8, 0BCA-0BCD

Telugu:        0C01-0C03, 0C05-0C0C,  0C0E-0C10,  0C12-0C28,
               0C2A-0C33,  0C35-0C39,  0C3E-0C44, 0C46-0C48,
               0C4A-0C4D, 0C60-0C61

Kannada:       0C82-0C83, 0C85-0C8C,  0C8E-0C90,  0C92-0CA8,
               0CAA-0CB3,  0CB5-0CB9,  0CBE-0CC4, 0CC6-0CC8,
               0CCA-0CCD, 0CDE, 0CE0-0CE1

Malayalam:     0D02-0D03, 0D05-0D0C,  0D0E-0D10,  0D12-0D28,
               0D2A-0D39,  0D3E-0D43,  0D46-0D48, 0D4A-0D4D,
               0D60-0D61

Thai:          0E01-0E3A, 0E40-0E5B

Lao:           0E81-0E82,  0E84,  0E87-0E88,   0E8A,   0E8D,
               0E94-0E97,  0E99-0E9F, 0EA1-0EA3, 0EA5, 0EA7,
               0EAA-0EAB, 0EAD-0EAE,  0EB0-0EB9,  0EBB-0EBD,
               0EC0-0EC4, 0EC6, 0EC8-0ECD, 0EDC-0EDD

Tibetan:       0F00, 0F18-0F19, 0F35, 0F37, 0F39, 0F3E-0F47,
               0F49-0F69, 0F71-0F84,  0F86-0F8B,  0F90-0F95,
               0F97, 0F99-0FAD, 0FB1-0FB7, 0FB9

Georgian:      10A0-10C5, 10D0-10F6

Hiragana:      3041-3093, 309B-309C

Katakana:      30A1-30F6, 30FB-30FC

Bopomofo:      3105-312C

CJK Unified Ideographs: 4E00-9FA5

Hangul:        AC00-D7A3

Digits:        0660-0669,  06F0-06F9,  0966-096F, 09E6-09EF,
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               0A66-0A6F, 0AE6-0AEF,  0B66-0B6F,  0BE7-0BEF,
               0C66-0C6F,  0CE6-0CEF,  0D66-0D6F, 0E50-0E59,
               0ED0-0ED9, 0F20-0F33

Special characters:   00B5, 00B7, 02B0-02B8, 02BB,  02BD-02C1,
                      02D0-02D1, 02E0-02E4, 037A, 0559, 093D, 0B3D,
                      1FBE, 203F-2040, 2102, 2107, 210A-2113, 2115,
                      2118-211D,   2124,   2126,  2128,  212A-2131,
                      2133-2138, 2160-2182, 3005-3007, 3021-3029
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Symbols
!(logical expression), 112
!= (inequality operator), 119
## operator, 210
#define directive, 137
#dictionary directive, 217
#elif preprocessing directive, 141, 143
#else preprocessing directive, 141

common C extension, 215
#endif preprocessing directive, 141

common C extension, 215
#error preprocessing directive, 147
#if preprocessing directive, 141

using the defined operator, 143
#ifdef preprocessing directive, 141, 141
#include directive

module form, 217
#include preprocessing directive, 144
#line preprocessing directives, 145
#module directive, 217
#pragma preprocessing directive, 145
#undef preprocessing directive, 138
% (remainder operator), 117
& (address operator), 113
& (bitwise AND operator), 120
&& (logical AND operator), 120
( ) (cast operator), 114
( ) (Parenthesized expression), 104
* (indirection operator), 113
* (multiplication operator), 117
*= (assignment operator), 121
+ (addition operator), 117
++ (postfix increment operator), 110
++ (prefix increment operator), 112
+= (assignment operator), 121
, (comma operator), 122
-= (assignment operator), 121
-> (structure or union pointer operator), 110
. (structure and union operator), 110
... punctuator, 99
/ (division operator), 117
0...Octal constant, 11
0x...Hexadecimal constant, 11
< (less-than operator), 119
<< (left shift operator), 118
<= (less-than or equal-to operator), 119
<assert.h> header, 152
<complex.h> header, 152
<ctype.h> header, 156
<errno.h> header, 157
<limits.h> header, 158
<locale.h> header, 158
<math.h> header, 161
<setjmp.h> header, 164

<signal.h> header, 164
<stdarg.h> header, 165
<stdbool.h> header, 166
<stddef.h> header, 166
<stdio.h> header, 167
<stdlib.h> header, 174
<string.h> header, 179
<tgmath.h> header, 182
<time.h> header, 184
= (assignment operator), 121
== (equality operator), 119
> (greater-than operator), 119
>= (greater-than or equal-to operator), 119
>> (right shift operator), 118
?: (conditional operator), 120
[] (bracket operator), 107
^ (bitwise XOR operator), 120
__align modifier, 33
__bool_true_false_are_defined macro, 166
__DATE__ predefined macro, 147
__FILE__predefined macro, 147
__forceinline modifier, 33
__func__ predeclared identifier, 149
__inline modifier, 30
__LINE__ predefined macro, 148
__restrict data-type qualifier, 74
__restrict type qualifier, 55

defined, 57
examples, 58

__STDC__ predefined macro, 148
__STDC_HOSTED__ predefined macro, 148
__STDC_ISO_10646__ predefined macro, 148
__STDC_VERSION__ predefined macro, 148
__TIME__ predefined macro, 148
__typeof__ operator, 115
__unaligned data-type qualifier, 74
__unaligned type qualifier, 55
__VA_ARGS__ identifier, 139, 140
_Bool data type, 43

header file, 166
_Complex data type, 45
_Complex_I macro, 152
_Imaginary data type, 45
_Imaginary_I macro, 152
_IOFBF macro, 168
_IOLBF macro, 168
_IONBF macro, 168
_Pragma operator, 116, 116
_toupper macro

function-like form, 139
side effects, 140

| (bitwise OR operator), 120
|| (logical OR operator), 120
– (postfix decrement operator), 110
– (prefix decrement operator), 112

A
abort library function, 176
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abs library function, 178
Abstract declarator

cast, 114
defined, 38
example, 38

acos library function, 162
Active position, 18
Additive inverse, 112
Additive operator, 117

VSI C behavior, 206
Address-of operator (&), 113
Aggregate array, 75, 75

(see also Bracket operator ([ ]))
Aggregate type, 46
Aggregate variant, 219
Aliasing, 55
Alignment

predefined constants, 33
Alignment unit, 48
Allocation

storage, 66
AND bitwise operator (&), 120
ANSI C standard limits, 17
ANSI compatible extensions of VSI C

common C extensions, 215
VAX C extensions, 217

ANSI conformance, 201
argc

main function argument, 101
Argument

array as argument, 101
command-line, 102
Conversion, 100
conversion of function, 128
function as argument, 101
function prototype, 97
in #define preprocessor macros, 139
passing by value, 100
rules governing, 99
to a function

conversion, 100
variable

header file, 165
Argument promotions

default, 109
argv

main function argument, 102
Arithmetic

complex, 152
negation operator, 112

Arithmetic conversion
usual, 125

Arithmetic type, 40
Array

as argument, 101
as expression, 107
declaration of, 75
initialization, 77, 87

references, 107
size determination, 47
variable length, 79

Array declaration
syntax, 75

Array pointer, 78
Array storage

row-major order, 77
Array subscripts, 47
Array type

discussed, 47
Arrow operator (->), 110
ASCII character set, 2
ASCII equivalence table, 213
asctime library function, 185
asin library function, 162
assert macro, 152
Assignment operator, 121-122

precedence of, 106
Associativity of operator, 107
Asterisk operator (*), 73
atan library function, 162
atan2 library function, 162
atexit library function, 176
atof library function, 175
atoi library function, 175
atol library function, 175
auto class

defined, 28
example, 28

auto keyword
used in declaration inside block, 130

Automatic storage duration, 28

B
Backslash continuation character

in #define, 139
Backslash-newline continuation, 3
Basic concepts of C, 19
Basic data types, 39
Binary operator

additive, 117
bitwise, 120
defined, 8
equality, 119
logical, 120
multiplicative, 117
precedence of, 106
relational, 119
shift, 118

Bit field
creation of, 85
declaration, 84
declaration syntax, 84
OpenVMS VAX alignment, 207
restrictions, 84
ULTRIX RISC alignment, 207

Bit-field
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common C data types, 215
Bitwise negation operator ( ~ ), 113
Bitwise operator, 120
Bitwise shift operator, 206
Block

defined, 20
example, 20

Block scope
defined, 21
example, 21

Block statement, 129
bool macro, 166
Boolean type and values

header file, 166
Bracket operator ([]), 107
break statement

defined, 136
from switch statement, 132

bsearch library function, 177
BUFFSIZ macro, 168

C
C language

list of operators, 104
C lexicon

grammar, 1
C library

prototype, 99
cabs library functions, 155
cacos library functions, 152
cacosh library functions, 153
calloc library function, 176
carg library functions, 155
case label, 132
casin library functions, 153
casinh library functions, 154
Cast operator, 114

VSI C behavior, 205
catan library functions, 153
catanh library functions, 154
ccos library functions, 153
ccosh library functions, 154
ceil library function, 163
cexp library functions, 154
Character

data type
object, 71

string, 75, 75
(see also Array)

Character constant
defined, 14
value, 14
VSI C specific, 203

Character display
defined, 18

Character escape sequence
list, 15-16

Character object declaration, 71

Character processing
header file, 156

Character set
defined, 2

Character string, 44
Character type, 44
cimag library functions, 155
clearerr library function, 174
clock library function, 186
clock_t type, 184
CLOCKS_PER_SEC macro, 185
clog library functions, 154
Comma operator ( , ), 122

precedence of, 106
Command-line argument, 102
Comment, 6-7
Common C extensions of VSI C, 215
Common definition

header file, 166
Compatible type

categories, 24
defined, 24

Compilation unit
data sharing, 20
defined, 2
discussed, 20

Complete type, 24
Complex arithmetic

header file, 152
Complex data type, 45
complex macro, 152
Composite type

conditions, 26
defined, 26

Compound assignment operator, 204
Compound literal, 123
Compound statement, 129
Conditional compilation, 141-143
Conditional inclusion, 208
Conditional operator (?:)

defined, 120
precedence of, 106

Conditional statement, 131-133
Conforming implementation, 201
Conforming program, 201
conj library functions, 156
const

in pointer declaration, 73
in variable declaration, 73

const type qualifier
discussed, 52-53
example, 52
rules, 53

Constant
character, 14
defined, 11
enumeration, 16
floating-point, 12
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hexadecimal, 13
integer, 11

Constant expression
address constant, 123
arithmetic, 123
defined, 122
integral, 122

Constants
identifiers in #define macros, 139

Constructor expression, 123
Continuation

logical line, 3
string, 3
string termination, 10

Continuation character
in #define, 139

continue statement, 135
Control characters, 3
Conversion, 125

arithmetic data-type, 125
function argument, 108
function prototype present, 128
of data types, 125
usual arithmetic, 125
with cast operator, 114

cos library function, 162
cosh library function, 162
cpow library functions, 155
cproj library functions, 156
creal library functions, 156
csin library functions, 153
csinh library functions, 154
csqrt library functions, 155
ctan library functions, 153
ctanh library functions, 154
ctime library function, 185
Current object, 87

D
Data type

_Bool, 43
basic, 39
character, 44
complex, 45
conversion, 125
floating-point, 44
function, 93
function prototype, 97
integral, 42
introduction, 39
list, 39
range, 41
size, 41

Date and time
header file, 184

Declaration
aggregate array, 75
C library prototype, 99

enumeration, 72
example, 66
format, 70, 70
function, 96
function prototype, 97
general syntax, 65
inside block, 130
structure, 81
syntax rules, 66
tentative tag declaration, 82
type definitions, 90
union, 81

Declarator, 208
Declaring floating-point objects, 71
Decrement operator

prefix, 112
– postfix, 110
– prefix, 112

Default argument promotions, 109
default label, 132
Default widening convention, 100
defined operator, 143
Definition

function, 94
object, 66

Dereferencing pointer, 113
Derived type list, 46
Designation, 87

in initializer list, 87
Designator, 87, 87
Diagnostic, 201
Diagnostics

header file, 152
Difference between structure and union, 83
difftime library function, 186
Digraph sequence, 4
Directives (see Preprocessor directives)
div library function, 178
div_t type, 174
Division operator ( / ), 117
do statement, 134
Dot operator ( . ), 110

E
EDOM macro, 158
Ellipsis

in prototype, 99
else clause, 131
enum keyword, 72
Enumerated data type

declaration, 72
Enumerated type

discussed, 51
example, 51

Enumeration constant
defined, 16
syntax, 72
type, 51
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Enumeration specifier, 207
envp

main function argument
common C extension, 215
VAX C extension, 218

EOF macro, 168
Equal-to operator (=), 119
Equality operator, 119
ERANGE macro, 158
errno macro, 158
Error Code

header file, 157
Error directive, 210
Errors

types, 1
Escape sequence, 201
Evaluation order

of argument list, 100
Execution character set

defined, 2
list, 3

exit library function, 176
EXIT_FAILURE macro, 175
EXIT_SUCCESS macro, 175
exp library function, 163
Expression

as statement, 130
assignment, 121
binary

additive, 117
bitwise, 120
equality, 119
logical, 120
multiplicative, 117
relational, 119
shift, 118

comma, 122
compound literal, 123
conditional, 120
constant, 122
Constructor, 123
evaluation order, 23
postfix

array reference, 107
decrement operator, 110
function call, 108
increment operator, 110
structure reference, 110
syntax, 107
union reference, 110

primary
constant, 104, 104
defined, 103
identifier, 103
parentheses, 104
syntax, 103

relational, 119
unary

__typeof__, 115
_Pragma, 116
addressed, 113
arithmetic negation, 112
bitwise negation, 113
cast, 114
increment and decrement, 112
logical negation, 112
sizeof, 115

extern class, 29
External declaration, 69

scope, 69
External definition, 69
External linkage, 26
External object definition, 208

F
fabs library function, 164
false macro

stdbool.h, 166
fclose library function, 169
feof library function, 174
ferror library function, 174
fflush library function, 169
fgetc library function, 171
fgetpos library function, 173
fgets library function, 171
File

header, 151
File scope

defined, 21
example, 21

FILE type, 167
FILENAME_MAX macro, 168
float keyword, 71
Floating point

conversion to integer, 205
Floating point type, 44
Floating point types

list, 45
Floating-point

data type
declaration, 71
precision, 71

Floating-point constant
defined, 12
notation, 13
type, 13

Floating-Point constant
hexadecimal, 13

Floating-point object declaration, 71
floor library function, 164
fmod library function, 164
fopen library function, 169
FOPEN_MAX macro, 168
for statement, 134
Forward reference

defined, 34
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example, 34
fpos_t type, 167
fprintf library function, 170
fputc library function, 172
fputs library function, 172
fread library function, 173
free library function, 176
freopen library function, 170
frexp library function, 163
fscanf library function, 170
fseek library function, 173
fsetpos library function, 173
ftell library function, 173
Function

address, 101
address passing, 109
as argument, 101
C library

prototype, 99
call

defined, 93
syntax, 108
within macros, 140

declaration, 96
definition

argument, 99
argument conversion, 108
defined, 94
parameter, 99

definition of
main_program option, 217

identifier, 109
implicit declaration of, 97
main, 102
prototype, 97
syntax, 98
type, 93
undeclared, 108
variable parameter list, 99

Function argument
conversion, 128
to main, 102

Function definition
syntax, 94

Function inline expansion, 211
Function prototype

defined, 97
Function prototype scope

defined, 22
example, 22

Function prototypes
scope rules, 99
type conversion, 99
widening rules, 99

Function scope
defined, 22
example, 22

Function type

discussed, 46
example, 46

fwrite library function, 173

G
getc library function, 172
getchar library function, 172
getenv library function, 177
gets library function, 172
gmtime library function, 185
goto statement, 135
Greater-than operator (>), 119
Greater-than or equal-to operator(>=), 119

H
Header file

<assert.h>, 152
<ctype.h>, 156
<errno.h>, 157
<limits.h>, 158
<locale.h>, 158
<math.h>, 161
<setjmp.h>, 164
<signal.h>, 164
<stdarg.h>, 165
<stddef.h>, 166
<stdio.h>, 167
<stdlib.h>, 174
<string.h>, 179
<time.h>, 184
complex.h>, 152
defined, 16-17, 151
stdbool.h>, 166

Hexadecimal constant, 11
Hexadecimal floating-point constant, 13
Hosted Environment, 201
HUGE_VAL macro, 162

I
Identifier

defined, 5
linkage, 203

significant characters, 5
predeclared

__func__, 149
rules, 5
VSI C , 203

if false, definition, 131
if statement, 131
if true, definition, 131
imaginary macro, 152
Including file

C library prototype, 99
Including files, 144
Incompatible type, 25
Incomplete array declaration

example, 47
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uses, 75
Incomplete type

defined, 24
example, 24
forming with tags, 35

Increment operator
++ postfix, 110
++ prefix, 112
prefix, 112

Indirection operator (*), 113
INFINITY macro, 162
Initialization, 67

array, 75, 77, 87
C99 Standard, 87
constraints, 67
general, 67
implicit, 67
structure, 85, 85, 87
union, 86
VSI C behavior, 208

Initializers
syntax, 67

Initializing a pointer, 75
inline modifier, 30
Input/Output

header file, 167
Integer

conversion to floating point, 204
Integer constant

defined, 11
octal, 203
rules, 11

Integer data type
declaration, 71

Integer object declaration, 71
Integer promotion, 126

unsigned preserving, 204
value preserving, 204

Integral type, 42
discussed, 42-43

Internal declaration, 69
Internal linkage, 26
Inverse

additive, 112
isalnum library function, 156
isalpha library function, 156
iscntrl library function, 156
isdigit library function, 157
isgraph library function, 157
islower library function, 157
isprint library function, 157
ispunct library function, 157
isspace library function, 157
isupper library function, 157
isxdigit library function, 157
Iteration statement, 133-135

J
jmp_buf type, 164
Jump statement, 135-136
Jump, nonlocal

header file, 164

K
Keyword

break statement, 136
case label, 132
continue statement, 135
default label, 132
defined, 7
do statement, 134
else clause, 131
enum, 72
for statement, 134
goto statement, 135
if statement, 131
list, 7
return statement, 136
sizeof, 115
switch statement, 131
uses, 7
VAX C, 202
void, 74
while statement, 133

Keywords
__align, 33
__forceinline, 33
__inline, 30
inline, 30

L
L preceding wide character, 14
L_tmpnam macro, 168
Label statement

case, 132
defined, 129

labs library function, 178
LC_ALL macro, 159
LC_COLLATE macro, 159
LC_MONETARY macro, 159
LC_NUMERIC macro, 159
LC_TIME macro, 159
LC_TYPE macro, 159
ldexp library function, 163
ldiv library function, 178
ldiv_t type, 175
Less-than operator (<), 119
Less-than or equal-to operator (<=), 119
Lexical error, 1
Lexicon of the language, 1
Library function, 151-187

abort, 176
abs, 178
acos, 162
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asctime, 185
asin , 162
atan , 162
atan2, 162
atexit, 176
atof, 175
atoi, 175
atol, 175
bsearch, 177
cabs, 155
cacos, 152
cacosh, 153
calloc, 176
carg, 155
casin, 153
casinh, 154
catan, 153
catanh, 154
ccos, 153
ccosh, 154
ceil, 163
cexp, 154
cimag, 155
clearerr, 174
clock, 186
clog, 154
conj, 156
cos , 162
cosh , 162
cpow, 155
cproj, 156
creal, 156
csin, 153
csinh, 154
csqrt, 155
ctan, 153
ctanh, 154
ctime, 185
difftime, 186
div, 178
exit, 176
exp, 163
fabs , 164
fclose, 169
feof, 174
ferror, 174
fflush, 169
fgetc, 171
fgetpos, 173
fgets, 171
floor, 164
fmod , 164
fopen, 169
fprintf, 170
fputc, 172
fputs, 172
fread, 173
free, 176

freopen, 170
frexp, 163
fscanf, 170
fseek, 173
fsetpos, 173
ftell, 173
fwrite, 173
getc, 172
getchar, 172
getenv, 177
gets, 172
gmtime, 185
isalnum, 156
isalpha, 156
iscntrl, 156
isdigit, 157
isgraph, 157
islower, 157
isprint, 157
ispunct, 157
isspace, 157
isupper, 157
isxdigit, 157
labs, 178
ldexp, 163
ldiv, 178
localeconv, 160
localtime, 185
log, 163
log10, 163
longjmp, 164
malloc, 176
mblen, 178
mbstowcs, 179
mbtowc, 178
memchr, 180
memcmp, 180
memcpy, 179
memmove, 180
memset, 180
mktime, 187
modf , 163
perror, 174
pow, 163
printf, 170
putc, 172
putchar, 172
puts, 172
qsort, 177
raise, 165
rand, 176
realloc, 176
remove, 168
rename, 168
rewind, 174
scanf, 171
setbuf, 170, 170
setjmp, 164
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setlocale, 159
signal, 165
sin , 162
sinh , 163
sprintf, 171
sqrt, 163
srand, 176
sscanf, 171
strcat, 180
strchr, 181
strcmp, 180
strcoll, 180
strcpy, 180
strcspnv, 181
strerror, 181
strftime, 186
strlen, 181
strncat, 180
strncmp, 181
strncpy, 180
strpbrk, 181
strrchr, 181
strspn, 181
strstr, 181
strtod, 175
strtok, 181
strtol, 175
strtoul, 175
strxfrm, 181
system, 177
tan , 162
tanh , 163
time, 187
tmpfile, 169
tmpnam, 169
tolower, 157
toupper, 157
ungetc, 172
vfprintf, 171
vprintf, 171
vsprintf, 171
wcstombs, 179
wctomb, 179

Limit of nested #include lines, 144
Limits

ANSI, 17
defined, 17
header file, 158
numerical, 18
translation, 17

Linkage
determination, 26
example, 27
external, 26
internal, 26
none, 26
type, 26

Linkage pragma, 211

Literal
compound, 123

localeconv library function, 160
Localization

header file, 158
localtime library function, 185
log library function, 163
log10 library function, 163
Logical

arithmetic operator, 120
negation operator, 112

Logical false, definition, 131
Logical line, 3
Logical true, definition, 131
long float keyword, 215
long keyword, 71
longjmp library function, 164
Looping statement (see Iteration statement)
lvalue, 36

M
Macro

__bool_true_false_are_defined, 166
_Complex_I, 152
_Imaginary_I, 152
_IOFBF, 168
_IOLBF, 168
_IONBF, 168
assert, 152
bool, 166
BUFFSIZ, 168
CLOCKS_PER_SEC, 185
complex, 152
definition, 137

# operator, 140
## operator, 141
canceling, 138
function-like form, 139
naming parameters in, 139
object-like form, 139
possible side effects, 140

EDOM, 158
EOF, 168
ERANGE, 158
errno, 158
EXIT_FAILURE, 175
EXIT_SUCCESS, 175
false

stdbool.h, 166
FILENAME_MAX, 168
FOPEN_MAX, 168
HUGE_VAL , 162
imaginary, 152
INFINITY, 162
L_tmpnam, 168
LC_ALL, 159
LC_COLLATE, 159
LC_MONETARY, 159
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LC_NUMERIC, 159
LC_TIME, 159
LC_TYPE, 159
library, 151
MB_CUR_MAX, 175
NAN, 162
NULL

limits.h, 159
stddef.h, 167
stdio.h, 167
stdlib.h, 175
string.h, 179
time.h, 185

offsetof, 167
predefined

__DATE__, 147
__FILE__, 147
__LINE__, 148
__STDC__, 148
__STDC_HOSTED__, 148
__STDC_ISO_10646__, 148
__STDC_VERSION__, 148
__TIME__, 148
defined, 147
system identification, 148

RAND_MAX, 175
references, 140
SEEK_CUR, 168
SEEK_END, 168
SEEK_SET, 168
SIG_DFL, 165
SIG_ERR, 165
SIG_IGN, 165
stderr, 168
stdin, 168
stdout, 168
substitution, 137
substitution within #include directives, 144
TMP_MAX, 168
truestdbool.h, 166
va_arg, 166
va_list, 166
va_start, 166

Macro expansion, in pragmas, 145
Macro names

list, 209
Main function

passing parameter, 102
syntax, 102
with main_program option, 217

main_program option, 217, 217
malloc library function, 176
Math, type-generic

header file, 182
Mathematics

complex, 152
header file, 161

MB_CUR_MAX macro, 175

mblen library function, 178
mbstowcs library function, 179
mbtowc library function, 178
Member

structure, 205
union, 205
variant aggregate, 219

memchr library function, 180
memcmp library function, 180
memcpy library function, 179
memmove library function, 180
memset library function, 180
Minus

unary, 112
mktime library function, 187
modf library function, 163
Modifiable lvalue, 36
Modifier

storage class, 29
Multibyte character

defined, 15
VSI C, 201

Multidimensional array, 77
subscripts, 47

Multiplicative operator, 205
Multiplicative operator (*), 117

N
Name space

defined, 36
types, 36

NAN macro, 162
Negation

arithmetic, 112
logical, 112

Nesting of #include lines, 144
New style parameter declaration, 95
New-line character, 3
Nonlocal jump

header file, 164
Not-equal-to operator (!=), 119
null (#) preprocessing directive, 147
Null character, 3
NULL macro

limits.h, 159
stddef.h, 167
stdio.h, 167
stdlib.h, 175
string.h, 179
time.h, 185

Null pointer
automatic initialization, 74
defined, 47
used with the equality operator, 122

Null statement, 130
Numeric escape sequence, 16-16
Numerical limit

defined, 18
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Numerical limits, 202

O
Octal constant, 11
Octal digits 8 and 9, 203, 215
offsetof macro, 167
Old style parameter declaration

comparison with prototype style, 97
example, 96

Old-style function declaration
combined with prototype style, 25

One's complement operator ( ~ ), 113
Operand conversion, 125
Operator

__typeof__, 115
_Pragma, 116
assignment, 121-122
binary

additive, 117
bitwise, 120
equality, 119
logical, 120
multiplicative, 117
relational, 119
shift, 118

bracket, 107
categories, 106
comma, 122
conditional, 120
defined, 8, 143
list, 104
precedence, 106
sizeof, 115
unary

address, 113
arithmetic negation, 112
bitwise negation, 113
cast, 114
increment and decrement, 112
indirection, 113
logical negation, 112

OR bitwise operator (|), 120
Original declaration, 70

P
Parameter

function prototype, 97
in #define preprocessor macros, 139
main function, 102
rules governing, 99

Parameter passing
to main function, 102

Parenthesized expression, 104
Parsing

top-down, 69
Parsing error, 2
Period operator ( . ), 110

perror library function, 174
Pointer

declaration, 73
null, 74
to array, 78
unary operator, 113
using the increment operator (++), 113
void, 74

Pointer conversion, 205
Pointer declaration

syntax, 73
Pointer initialization, 75
Pointer to void, 47
Pointer type

discussed, 46
referenced type, 46

Portability concern
main_program option, 217

Portability concerns
char * generic-pointer notation, 74
length of bit field, 84
preprocessor implementations, 137
structure alignment, 83

Postfix decrement operator, 110
Postfix expression

array reference, 107
decrement operator, 110
function call, 108
increment operator, 110
structure reference, 110
union reference, 110

Postfix increment operator, 110
pow library function, 163
Pragma

directive, 211
VAX C, 211

Precedence
defined, 8
discussed, 106
operator, 106

Predefined alignment constants, 33
Predefined macro names, 147
Prefix decrement operator, 112
Prefix increment operator, 112
Preprocessing

discussed, 37
Preprocessing operator

#, 140
##, 141

Preprocessor directive
#define, 137
#elif, 141
#else, 141
#endif, 141
#error, 147
#if, 141
#ifdef, 141, 141
#include
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defined, 144
macro substitution, 144

#line, 145
#pragma, 145
#undef, 138
null (#), 147

Primary expression
constant, 104, 104
defined, 103
identifier, 103
parentheses, 104

Primary operator
precedence of, 106

printf library function, 170
Promotion of data type, 125
Prototype

defined , 97
for C library function, 99

Prototype style function declaration
combined with old-style, 25
defined, 97

Prototype style parameter declaration, 95
ptrdiff type, 167
Punctuator, 9-9
putc library function, 172
putchar library function, 172
puts library function, 172

Q
qsort library function, 177

R
raise library function, 165
rand library function, 176
RAND_MAX macro, 175
realloc library function, 176
register class, 28
register keyword

used in declaration inside block, 130
Relational operator, 119
Relaxed pointer/integer compatibility

common C, 215
VAX C, 217

Remainder operator (%), 117
remove library function, 168
rename library function, 168
Restricted pointer, 55

defined, 57
examples, 58

return keyword
statement syntax, 136

rewind library function, 174
Routine

library, 151
rvalue, 36

S
Scaling pointer, 79
scanf library function, 171
Scope, 21
SEEK_CUR macro, 168
SEEK_END macro, 168
SEEK_SET macro, 168
Selection statement, 131-133
Semantic error, 2
Sequence point, 23
setbuf library function, 170
setjmp library function, 164
setlocale library function, 159
Shift operator (<< and >>), 118
Side effect

defined, 23
example, 23
within macros, 140

sig_atomic_t type, 164
SIG_DFL macro, 164
SIG_ERR macro, 165
SIG_IGN macro, 165
SIGABRT signal, 165
SIGFPE signal, 165
SIGILL signal, 165
Signal handling

header file, 164
signal library function, 165
Signed integer, 204
Significant characters

identifier, 5
SIGSEGV signal, 165
SIGTERM signal, 165
Similarity between structure and union, 83
Simple object

declaration format, 70
default initialization, 71
initialization, 71

sin library function, 162
sinh library function, 163
size_t type

stddef.h, 167
stdio.h, 167
stdlib.h, 174
string.h, 179
time.h, 184

sizeof keyword, 115
sizeof operator, 115, 205
Source character set

defined, 2
storage, 44

Source file inclusion, 208
sprintf library function, 171
sqrt library function, 163
srand library function, 176
sscanf library function, 171
Standard header file, 151
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Statement
break

defined, 136
from case statement, 132

compound, or block, 129
conditional, 131-133
continue, 135
default, 132, 132
do

defined, 134
iteration statement, 133

expression, 130
for

defined, 134
iteration statement, 133

goto, 135
if, 131
iteration, 133-135
jump, 135-136
label, 129
like, 133
null, 130
return, 136
selection, 131-133
switch, 131
while, 133

static class, 29
static keyword

used in declaration inside block, 130
Static storage duration, 28
stderr macro, 168
stdin macro, 168
stdout macro, 168
Storage allocation

order, 67
to an object, 66

Storage class
default, 28
types, 27

Storage class specifier, 206
Storage classes

auto, 28
extern, 29
register, 28
static, 29

Storage duration, 28
Storage-class modifiers, 29

__align, 33
__forceinline, 33
__inline, 30
inline, 30

strcat library function, 180
strchr library function, 181
strcmp library function, 180
strcoll library function, 180
strcpy library function, 180
strcspnv library function, 181
strerror library function, 181

strftime library function, 186
String

defined, 10
String literal

defined, 10
example, 10
modifying, 75
VSI C, 204

String processing
header file, 179

strlen library function, 181
strncat library function, 180
strncmp library function, 181
strncpy library function, 180
strpbrk library function, 181
strrchr library function, 181
strspn library function, 181
strstr library function, 181
strtod library function, 175
strtok library function, 181
strtol library function, 175
strtoul library function, 175
struct lconv type, 158
struct tm type, 185
Structure

bit field, 84
declaration, 81-83
forward referencing, 82
initialization, 85, 87
member

reference, 110
variant aggregate, 219

Structure alignment
described, 206
discussed, 48
on OpenVMS Alpha, 207
on OpenVMS VAX, 207
on Tru64 UNIX, 207

Structure declaration
syntax, 80, 81

Structure member
declaration, 81

Structure specifier, 206
Structure type, 47
strxfrm library function, 181
Subscripting, 107
Substitution

macro, 137
rules, 140

within #include directives, 144
switch keyword

declaration inside, 133
switch statement, 131

VSI C behavior, 208
Syntax

main function, 102
Syntax error, 1
System identification predefined macros, 148
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system library function, 177

T
Tag

declaration syntax, 89
discussed, 34
example, 35
tentative declaration, 82

tan library function, 162
tanh library function, 163
Tentative definition

defined, 70
discussed, 27
example, 27

Tentative tag declaration, 82
Ternary operator, 8
Time and Date

header file, 184
time library function, 187
TMP_MAX macro, 168
tmpfile library function, 169
tmpnam library function, 169
Token, 1
Token replacement, 137
tolower library function, 157
toupper library function, 157
Translation

of C code, 37
phase, 37

Translation limit, 17
Translation limits, 202
Trigraph sequence, 4
true macro

stdbool.h, 166
Type

clock_t, 184
div_t, 174
FILE, 167
fpos_t, 167
incomplete, 24
jmp_buf, 164
ldiv_t, 175
library, 151
ptrdiff, 167
sig_atomic_t, 164
size_t

stddef.h, 167
stdio.h, 167
stdlib.h, 174
string.h, 179
time.h, 184

struct lconv, 158
struct tm, 185
va_list, 165
VSI C, 203
wchar_t

stddef.h, 167
stdlib.h, 174

Type casting, 114
Type conversion, 114
Type definition, 63-64
Type definitions, 90
Type name, 37
Type qualifier, 51-63

defined, 52
use, 52
VSI C, 208

type qualifier
__restrict, 55

defined, 57
examples, 58

__unaligned, 55
const, 52
volatile, 53

Type specifier, 206
Type-generic math

header file, 182
typedef

and structure tags, 90
defined, 63

typedef keyword
use in declaration, 90

U
Unaligned data, 55
Unary expression

__typeof__, 115
_Pragma, 116
address, 113
arithmetic negation, 112
bitwise negation, 113
cast, 114
increment and decrement, 112
indirection, 113
logical negation, 112
sizeof, 115

Unary minus, 112
Unary operator

defined, 8
precedence of, 106

ungetc library function, 172
Union

declaration, 81
initialization, 86
member

reference, 110
variant aggregate, 219

Union declaration
syntax, 80, 81

Union specifier, 206
Union type

discussed, 49
Universal character names, 6, 221
Unnamed bit field, 84
Unsigned integer, 204
Unsigned integral type, 43
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Unsigned preservation rules
Common C mode, 216
VAX C mode, 218

User-defined function (see Function)
Usual Arithmetic conversions, 125
Utilities

header file, 174

V
va_arg macro, 166
va_list macro, 166
va_list type, 165
va_start macro, 166
Vacuous tag declaration

example, 35
Variable

initialization, 71
Variable arguments

header file, 165
Variable-length array, 75, 79
Variable-length parameter list, 99
Variably modified type, 66
Variant record, 49
Variant structure

defined, 219
VSI C behavior, 206

Variant union, 219
VSI C behavior, 206

variant_struct, 219
variant_union, 219
VAX C built-in functions, 217
VAX C extension of VSI C, 217
VAX C keywords, 217
vfprintf library function, 171
Visibility

defined, 22
discussed, 22
example, 22

void keyword
pointer, 74

void pointer
defined, 74
uses, 47

Void type
defined, 50
example, 50
use, 50

volatile type qualifier
discussed, 54
rules, 54

vprintf library function, 171
vsprintf library function, 171

W
wchar_t type

stddef.h, 167
stdlib.h, 174

wcstombs library function, 179
wctomb library function, 179
while statement, 133
White space

character, 3
use, 1

Wide character
defined, 14
use, 2

Wide character type, 44
Wide-character constant

defined, 14
example, 14

Wide-character string, 14

X
XOR bitwise operator ( ^ ), 120

Z
Zero-length bit field, 85
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