uma Software

VSI OpenVMS
Debugger Manual

Publication Date: XXXXXX

This manual explains the features of the OpenVMS Debugger for programmers in
high-level languages and assembly language.

Operating system and Version: VS| OpenVMS version X.X
Software Version: VSI OpenVMS version X.X

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

VSI OpenVMS Debugger Manual:

nma Software

Copyright © 2017 VMS Software, Inc., (VSI), Bolton Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VS| required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in
the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSl shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.
Intel, Itanium and | A64 are trademarks or registered trademarks of Intel Corporation or its subsidiariesin the United States and other countries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or
other countries.

Kerberosis atrademark of the Massachusetts Institute of Technology.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vista is either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is aregistered trademark of The Open Group

UNIX isaregistered trademark of The Open Group.

The VS| OpenVMS documentation set is available on DVD.

ii VSI Confidential, NDA Required

Debugger Manual

Part I. Introduction to the Debugger

Chapter 1. Introduction to the Debuggerueneeveevenrnenensensennsecsnensncssnssaessnenns 5
1.1. Overview of the DebUZEETccouuiiiiiiiiiiii e 5
L.1.1. Functional FEatUresc..viiuuiiiiniiiiiiiii e 5
1.1.2. Convenience FEAtUIrEsc..ieiiuuiiiiniiiiiiiiie e 7

1.2. Preparing an Executable Image for Debuggingcccooviiiiiiiiiiiiiiniiiiniinn e 9
1.2.1. Compiling a Program for Debuggingcccooeeiiiiiiiiiiiiiiiiniinne e, 9

1.2.2. Linking a Program for Debuggingcevuiiiiiiiniiiiiiiiiiiee e 9

1.2.3. Controlling Debugger Activation with the LINK and RUN Commands 10

1.3. Debugging a Program with the Kept Debuggerc.c.cooiiiiiiiiiiiin 11
1.3.1. Starting the Kept DebUZEErccouiiiiiiiiiiiiiiiiii e 11

1.3.2. When Your Program Completes EXeCutioncccoceuviiiiiiiiiiiiiinniiiineiiineennn.. 14

1.3.3. Rerunning the Same Program from the Kept Debuggerc.coccoiviiiiniininnnn.. 14

1.3.4. Running Another Program from the Kept Debuggerccoooviiiiiiiiiiiinninn.. 15

1.4. Interrupting Program Execution and Aborting Debugger Commandsccc.cceuneennn.. 15
1.5. Pausing and Resuming a Debugging SeSSIONoevuiiiiiiiniiiniiineiieeieineeeeiieeeeeann, 16
1.6. Starting the Debugger by Running a Programccoooiiiiiiiiiiiniiininec e, 16
1.7. Starting the Debugger After Interrupting a Running Programccooociiviiiniiiniinn.. 17
1.8. Ending a Debugging SeSSI0Nc..uviiuiiiiiiiii it 18
1.9. Debugging a Program on a Workstation Running DECwindows Motifc....cco.cc. 18
1.10. Debugging a Program from a PC Running the Debug Clientccooeeiiiiiiniin, 19
1.11. Debugging Detached Processes That Run with No CLIccooiiiiiiiiiiiiniinin, 20
1.12. Configuring Process Quotas for the Debuggercoevuviiiiiiiiiiiiiieiiee e, 20
1.13. Debugger Command SUMIMATYveeuueiutetiineeiie ittt ettt e et e eaieeaneeans 20
1.13.1. Starting and Ending a Debugging SeSsionceeueiuneiiniiineiniieiieiieennnnn. 20
1.13.2. Controlling and Monitoring Program Executionc.c.cccoveiiniiiiniiiinii. 21
1.13.3. Examining and Manipulating Dataccooviiiiiiiiiniiiiniinn e 22
1.13.4. Controlling Type Selection and RadiXceuoviiiiiiiiiiiiiiiiiiiiin e, 22
1.13.5. Controlling Symbol Searches and Symbolizationcceeeeiiiiiniiiniienneen. 22
1.13.6. Displaying Source Codeccuuviiuiiiiiiiiiieiiineeie et 22
1.13.7. USINg SCre€n MOAEovuniiiiiiieie ettt e e e e 23
1.13.8. Editing SouUrce COA@ceuueiuiiiiiieiie ettt e e e eens 23
1.13.9. Defining SymbOISc...oiiiiiiiiiiiiiii e 23
1.13.10. Using Keypad Modeoceuuniiiiiiiiiiiiie e 24
1.13.11. Using Command Procedures, Log Files, and Initialization Files 24
1.13.12. USIing Control SIUCTUIEScceuuirtuiiiineiiietii ettt eeei e et eeiieeeaneenes 24
1.13.13. Debugging Multiprocess Programscccoeeeuiiiiiniiiiniiiiniiiiniiincieeei 24
1.13.14. Additional Commandscooouuiiiiiiiiniiiiiineeii e 25

Part Il. Command Interface

Chapter 2. Getting Started with the Debuggerucveeveecruerssecnsuecssnecsercsnensenes 33

2.1. Entering Debugger Commands and Accessing Online Helpcoooiiiiiiiiin.o. 33
2.2. Displaying Source COAEccuuiuuiitieiiiei e 35
2.2.1. NOSCTEEN MOAEueiiiiiiiiiiiii e e 35
2.2.2. SCTEEN MOME ..oeuiiiieiii i 35
2.3. Controlling and Monitoring Program EXecutionc..ccooiiiiiiiiiiiiiiiiiiiiieece e, 36
2.3.1. Starting or Resuming Program EXecutionc..coooiiiiiiiiiiiiiniiiiiieneeen, 36
2.3.2. Executing the Program by Step Unitccooiiiiiiiiiiiiiiieie e, 37
2.3.3. Determining Where Execution Is Pausedcooiiiiiiiiiiii, 38
2.3.4. Suspending Program Execution with Breakpointsc..ccooooiiiii 38
2.3.5. Tracing Program Execution with Tracepointscooeiiiiiiiiiiiiiiiiiieineannes 40
2.3.6. Monitoring Changes in Variables with Watchpointscco.cooviiiiiiiiininn. 40
2.4. Examining and Manipulating Program Datacoooiiiiiiiiiii 41
2.4.1. Displaying the Value of a Variablecoooiiiiiiiiiiii e, 41

VSI Confidential, NDA Required iii

Debugger Manual

2.4.2. Assigning a Value to @ Variablec..occiiiiiiiiiiiiiiiiiiin e 42
2.4.3. Evaluating Language EXPressionscceuviiuniiiiniiiiniiiiniineeinecii e 43

2.5. Controlling Access to Symbols in Your Programcccoeeiiiiiiiiniiiiniiiniiinnceeene, 44
2.5.1. Setting and Canceling Modulescccoveiuiiiiiiiiiiiiiiii e 44
2.5.2. Resolving Symbol AMDBIUITIESueevuniiiiiiiiiiiiiineiii e 44

2.6. Sample Debugging SESSIONcc.uuiiuuniiiiniiiieeiie e e 45
Chapter 3. Controlling and Monitoring Program Executionc.ccoeeueerueccuneennen. 49
3.1. Commands Used to Execute the Programccooooiiiiiiiiiiiiiiiiie e, 49
3.2. Executing the Program by Step Uitcc.uviiuiiiiiiiiiiiiiin e 50
3.2.1. Changing the STEP Command Behaviorccoociiiiiiiiiiiiiiiiincce 50
3.2.2. Stepping Into and Over ROULINEScc.uviiiiiiiiiiiiiniiii e 51

3.3. Suspending and Tracing Execution with Breakpoints and Tracepointscccocceuueeenn. 52
3.3.1. Setting Breakpoints or Tracepoints on Individual Program Locations 53

3.3.2. Setting Breakpoints or Tracepoints on Lines or Instructionsc...ccccveeeuneeennnee. 55
3.3.3. Setting Breakpoints on Emulated Instructions (Alpha Only)ccoeevvininnn.. 56
3.3.4. Controlling Debugger Action at Breakpoints or Tracepointsc...cccoeeeeuneenn.. 56
3.3.5. Setting Breakpoints or Tracepoints on EXceptionscccoveeuviiiniiinieiinninnn.. 57
3.3.6. Setting Breakpoints or Tracepoints on EVentsccooociiiiiiiniiiiniiiiniiiinnennn. 57
3.3.7. Deactivating, Activating, and Canceling Breakpoints or Tracepoints 58

3.4. Monitoring Changes in Variables and Other Program Locationsc...cccooeeevviinninnn. 58
3.4.1. Deactivating, Activating, and Canceling Watchpointscccooeeeiiiiiiniinnen. 60
3.4.2. Watchpoint OPLIONSceuuuiiiniiiieiii ettt eae e 60
3.4.3. Watching Nonstatic Variablesccooviiiiiiiiiniiiiiiiiiin e 61
Chapter 4. Examining and Manipulating Program Datacoveeeuernnennennnen 65
4.1, GENETAL COMCEPLS ..eevuneiiieiii ettt et ettt ettt e e et et et e e e eeenns 65
4.1.1. Accessing Variables While Debuggingccoceoviiiiiiiiiiiiniiiieieeeeieeeeenn 65
4.1.2. Using the EXAMINE Commandcccoeiuiiiiiiiiiieiieii e e e eeneeens 66
4.1.3. Using the DUMP Commandceeuuiiiiiiiiiieiieiieine e e e e e eenns 66
4.1.4. Using the DEPOSIT Commandc.ceceuuiiiiiniiiiiiiiiiiineiiiecii e 67
4.1.5. Address Expressions and Their Associated TyPesc.coeeuuviiiniiiiniiiinieiineennnnes 68
4.1.6. Evaluating Language EXPressionsceeuuviiuiiiiiineiiiniiiiniineeineciieceie e 69
4.1.7. Address Expressions Compared to Language EXpressionscccoeeeuuveeinneennnenn. 71
4.1.8. Specifying the Current, Previous, and Next Entityccoccoviiiiiiiiiniiinninenn. 72
4.1.9. Language Dependencies and the Current Languagec.cocceviiiineiiinieinnnienan. 74
4.1.10. Specifying a Radix for Entering or Displaying Integer Datac....e.... 74
4.1.11. Obtaining and Symbolizing Memory Addressesceveuvieneieneiineiniernneinnannnns 76

4.2. Examining and Depositing into Variablescooviiiiiiiiiiiiiniiiiieeiece e 77
N BN o 1 3) o<t P 78
4.2.2. ASCII StrING TYPES ..ueeenneiinetiie ettt ettt et ettt e e e e 79
.23 ATTAY TYPES ettt 79
4.2.4. RECOTA TYPES «evueerieiiieeii ettt ettt e e e e 81
4.2.5. POINtEr (ACCESS) TYPES .uerineiiiieiiie it ettt 81

4.3. Examining and Depositing INStUCHONSviuneiineiieiiieieeie et e e e e e e 82
4.3.1. Examining INStrUCHIONSvuuiieniieiiieii et et et e e e e e e e e e eaneenns 82

4.4. Examining and Depositing into REGIStErscoeiuiiiiiiiiiiiiiiieieeee e 84
4.4.1. Examining and Depositing into Alpha Registerscccoveeviiiiiiiiiniiininiennnenn. 84
4.4.2. Examining and Depositing into Integrity server Registerscc.ccoevvviinninnne. 85

4.5. Specifying a Type When Examining and Depositingc.oevuneiuneiiieinieinieinniieiinaennns 89
4.5.1. Defining a Type for Locations Without a Symbolic Namecccooecevveinnnienn. 90
4.5.2. Overriding the Current TYPEoceuuiiiiiiiiiiii e 90
Chapter 5. Controlling Access to Symbols in Your Program 95
5.1. Controlling Symbol Information When Compiling and Linkingcccc.ccooviiiniiniinn. 96
5.1 COMPIING ..eiiiiiiie et 96
5.1.2. Local and Global Symbolscooviiiiiiiiiiiiii e 97
5130 LINKING ettt 97
5.1.4. Controlling Symbol Information in Debugged Imagesccooceiveiiineiineenni. 98

VSI Confidential, NDA Required

Debugger Manual

5.1.5. Creating Separate Symbol Files (Alpha Only)cccooeeiiiiiiiiiiiniiiniinee, 99

5.2. Setting and Canceling ModUlescc.iiiuiiiiiiiiiiiiii e 99
5.3. Resolving Symbol AMDBIGUITIESuvvuniiiiiieiiieiie e et e e e e e e e e e e eeaenns 100
5.3.1. Symbol Lookup CONVENtIONScc..veeuuiiiineeiiniiiiineiiieeiiin et eeeieeeieeenen 101
5.3.2. Using SHOW SYMBOL and Path Names to Specify Symbols Uniquely 102
5.3.3. Using SET SCOPE to Specify a Symbol Search Scopeccooveeviniiiiniiinniene. 104

5.4. Debugging Shareable IMagesooeuuiiiiiiiiiiniiiii e 104
5.4.1. Compiling and Linking Shareable Images for Debuggingc...cccooeeevveennien, 105
5.4.2. Accessing Symbols in Shareable Imagesc.ooccuiveiiiniiiiniiiiiiiiniineen 106
5.4.3. Debugging Resident Images (Alpha Only)occoiviiiiniiiiiiiiiiiinee, 108
Chapter 6. Controlling the Display of Source Code 111
6.1. How the Debugger Obtains Source Code Informationccoeveiiiiiiiiiiniineinnnnnnn. 111
6.2. Specifying the Location of Source Filesccooiiiiiiiiiiiiiiiiii e 111
6.3. Displaying Source Code by Specifying Line NUmberscoccoevenviiieineinneinieinnnnnnns 112
6.4. Displaying Source Code by Specifying Code Address EXpressionscoeeueeveinnnnnn. 113
6.5. Displaying Source Code by Searching for Stringscceveviiieiiiiiieiiniineireieeannes 115
6.6. Controlling Source Display After Stepping and at Event pointscccoeeevuniiiineennnnee. 116
6.7. Setting Margins for Source Displayocooiiiiiiiiiiiniiii e 117
Chapter 7. Screen Mode 119
7.1. Concepts and TerminolOZYc..oviuuuiiiiuiiiiieiie et et eaie e 119
7.2, DISplay KINAS ...ccuuneiiiniiiiei e 121
7.2.1. DO (Command][; ...]) Display Kindcccocoiiiiiiiiiiii e, 121
7.2.2. INSTRUCTION Display Kindooeiiiiiiiiiiiiiieiiiiineeiie e, 122
7.2.3. INSTRUCTION (Command) Display Kindccooiiiiiiiiiiiiniiiiiiieen 122
7.2.4. OUTPUT Display Kindcc..oeeuiiiiiiiiiiiiiiiiece e 123
7.2.5. REGISTER Display Kindccoouuiiiiiiiiiiiiiieeie e 123
7.2.6. SOURCE Display Kindc..oeeuiiiiiiiiiiiiiiieie e 124
7.2.7. SOURCE (Command) Display Kindccoouiiiiiiiiiiiiiiiieie e 125
7.2.8. PROGRAM Display Kindccoouuiiiiiiiiiiiiiiiine e 125

7.3, DiISPlay AtIIDULESuivneiieieei et et e e et e e e e e et et e e e aans 125
7.4. Predefined DISPIaysc.uuiiiiuiiiiiiii e 127
7.4.1. Predefined Source Display (SRC) ...couiiiniiiiiiiiiieiieie e 129
7.4.2. Predefined Output Display (OUT)ceuviiniiiniiieiieiieee et 130
7.4.3. Predefined Prompt Display (PROMPT)ccooiiiiiiiiiiiiiiiiiiiiiiie e, 131
7.4.4. Predefined Instruction Display (INST)ccouuviiiiiiiniiiiiiin e 131

7.5. Manipulating EXisting DiSPlaysoceueiuiiiiiiiiiieii e 133
7.5.1. Scrolling @ DISPIAY ...vvuieniiieiie et 133
7.5.2. Showing, Hiding, Removing, and Canceling a Displaycccoevvviiiiineennnnnn. 134
7.5.3. Moving a Display Across the Screenccoveiiiiiiiiiiiiiiiiniinece e 135
7.5.4. Expanding or Contracting a Displaycccueeiiiiiiiiiiniiiiiiiei e 135

7.6. Creating @ New DISPIaycc.uviiiiiiiiiiiiii e 135
7.7. Specifying a Display WINAOWcouiiiiiiiiieiie e aenas 136
7.7.1. Specifying a Window in Terms of Lines and Columnscccocveiiiiinannn.e. 136
7.7.2. Using a Predefined WIindowcoooiiiiiiiiiriiiiin e 136
7.7.3. Creating a New Window Definitionccoeoeiiiiiniiiniiiiiiiiii e, 136

7.8. Sample Display Configurationc.ueeueiieiieeiieiie e e e e e aeeeanns 137
7.9. Saving Displays and the Screen Stateoviuiiiiiiiiiiiiiieii e 137
7.10. Changing the Screen Height and Width ... 138
7.11. Screen-Related Built-In Symbolsc.ooiiiiiiiiiniii e 138
7.11.1. Screen Height and Width ..o 138
7.11.2. Display Built-In SYMDOLSoviniiiiiiiiiie e 139

7.12. Screen Dimensions and Predefined Windowsccooeiiiiiiiiiiiiiiiiniieee e 139
7.13. Internationalization of Screen Modecoouuiiiiiiiiiiiiiiiiiii e 141

Part Ill. DECwindows Interface

VSI Confidential, NDA Required v

Debugger Manual

Chapter 8. INtrodUCtiONccccvceiierivsneicciisnriccsssannecssssssscsssssssessssssssssssssssssssssssssssssass 147
8.1, INTIOUCTION ...ivtiitiii et e et e e e e et e e e e e e et e et e et e et e an e aaneasneerneaenns 147
8.1.1. Convenience FEAtUIESoivuiiiiiiiieiieii e e e e e e e e aeeaneeans 148
8.2. Debugger Windows and MENUSceuuiiieiiiniiieiiieieii et e e e e e eie e eeaneeens 150
8.2.1. Default Window Configurationceeiueiineiineiineiineieeiineieeieeieeieenneaens 150
8.2.2. Main WINAOW ...vvniiiiiiieiie et e e e et e et e et e eae e e e eaneeaneaannas 150
8.2.3. Optional VIews WINAOWceuuiiiniiiiiiieiieiee e e e e e eaeeeaens 154
8.3. Entering Commands at the Promptcoeiiiiiiiiiiiiii e 158
8.3.1. Debugger Commands That Are Not Available in the HP DECwindows Motif for
OPENVMS INLEITACE ...ivniiniiieii i e e e e e e e e eans 159
8.4. Displaying Online Help About the Debuggercooviiiiiiiiiiiiiiiii e 160
8.4.1. Displaying Context-Sensitive Helpcocoviiiiiiiiiiiiiiniieieee e 160
8.4.2. Displaying the Overview Help Topic and Subtopicccocevveiiiiiiiniiineinnnnnn. 161
8.4.3. Displaying Help on Debugger Commandscocevviineiineiineiineiniineiineennnnns 161
8.4.4. Displaying Help on Debugger Diagnostic Messagescceevveveivrneiineiineeinennnns 161
Chapter 9. Starting and Ending a Debugging Session 163
9.1. Starting the Kept DebUgZErovviiiiiiiiiii et aanas 163
9.2. When Your Program Completes EXECUtIONccouiiiniiiniiiiiieiiieiiieiieii e eeeeaes 165
9.3. Rerunning the Same Program from the Current Debugging Sessionccevvvevennnnn. 166
9.4. Running Another Program from the Current Debugging Sessioncceevvnevvnennnnnnn. 166
9.5. Debugging an Already Running Programccoeiiiiiiiiiiiiiiniiin e 166
9.6. Interrupting Program Execution and Aborting Debugger Operationsceevvnennnn. 167
9.7. Ending a Debugging SESSIONcceuiiiniiiiiiieiiieieeieiie e eiee e eteeaeean e e eeneaeaaaenaas 167
9.8. Additional Options for Starting the Debuggercccoviiiiiiiiiieiiiii e 167
9.8.1. Starting the Debugger by Running a Programcccoeeiiviiiniiieiiniineeinnn. 168
9.8.2. Starting the Debugger After Interrupting a Running Program 168
9.8.3. Overriding the Debugger's Default Interfacecooevviiiiiiiiiiniiniiee, 169
9.9. Starting the Motif Debug CHEntc.oviiiiiiiiiiiiiiie e 172
9.9.1. Software ReqUITEMENTScc.viiuiiiiiiiiiiieii et e e e e e e e e e e et eaeeeaenas 172
0.9.2. Starting the SEIVETuiivniiieiieiie et e e e e e e e e e e e e e e aaeeaeees 172
9.9.3. Primary Clients and Secondary ClHentsccccoevuveiiieiniiiieiiiieiieiieiieeenns 173
9.9.4. Starting the Motif CIENtccuviiiiiiiiiieiiie e e e e 173
9.9.5. Switching BetWeen SESSIONScevuiirniiiiiieiiieiieiieeieieereerieeierieeieeeeaens 175
9.9.6. Closing a Client/Server SESSIONc.uviiniiineeieeieiieeiierieeieeieerieeaneeaneaanaes 175
Chapter 10. Using the Debugger 177
10.1. Displaying the Source Code of Your Programc.ccooiiiiiiiiiiiiiiniiiniieieceein, 177
10.1.1. Displaying the Source Code of Another Routineccoevviiiiiniinniinnninnnnn. 178
10.1.2. Displaying the Source Code of Another Modulecoeviiiiiiiiiiniieinn, 179
10.1.3. Making Source Code Available for Displayccoceoviiiiiiiiiniiiniiiieiiieieeienns 179
10.1.4. Specifying the Location of Source Filesccocviiiiiiiiiiiiiiiiiineiineieeeeees 179
10.2. Editing YOUT PrOGIamooouiiiniiiniiieiie ettt e e e e e e e et e e e eenns 180
10.3. Executing YOUr Programcccviiuiiiiiiiniiieiie e e e e e e e e e e e e eens 181
10.3.1. Determining Where Execution Is Currently Pausedc.ccoovviiiiinniinniinnn. 181
10.3.2. Starting or Resuming Program EXecUutionc.ccoeiuiiiiiiiniiiniiniieiineeanss 181
10.3.3. Executing Your Program One Source Line at @ Timecocevevnviineinneinnnnnn. 182
10.3.4. Stepping into a Called ROULINGoevviiiniiiiiiiei e, 182
10.3.5. Returning from a Called ROULINGcovviiniiiniiiiiiei e 183
10.4. Suspending Execution by Setting Breakpointsc...oviviiiiiineiiniiieiiieiiieiieiinenn. 183
10.4.1. Setting Breakpoints on Source Linescocueiviiiiiiiiiiniieiieiieeieeeneeannnn. 183
10.4.2. Setting Breakpoints on Routines with Source Browserc.ccoevviiiniinnnnnn. 184
10.4.3. Setting an Exception Breakpointcocoviiniiiniiiniiiiiiieineieeieeieeieeineenn. 185
10.4.4. Identifying the Currently Set Breakpointsccccovvieiiiniiineiineiineiieeineninnnn. 185
10.4.5. Deactivating, Activating, and Canceling Breakpointsc.ccoevveiieiinnnnns 185
10.4.6. Setting a Conditional Breakpointccoveeiiiniiiniiineiineiineiieeieeieeie e 186
10.4.7. Setting an Action Breakpointcoceueiiniiineiineiineiieeii e e eaen 186
10.5. Examining and Manipulating Variablescccooviiiiiiiiiiiiiiiiiiei e 187

vi

VSI Confidential, NDA Required

Debugger Manual

10.5.1. Selecting Variable Names from Windowscccoceuiviiiiiiiiiniiiiniiineiiineennnn. 188
10.5.2. Displaying the Current Value of a Variableccooviiiiiiiiniiiniiininne, 188
10.5.3. Changing the Current Value of a Variablec...cccooiiiiiiiiiiiinin e, 190
10.5.4. Monitoring a Variablec.oooiiiiiiiiiiiiiiii e 190
10.5.5. Watching a Variablec.cooviiiiiiiiii e 192
10.5.6. Changing the Value of a Monitored Scalar Variableccooeiiiiiiiiniin, 192
10.6. Accessing Program Variablesccoooeuiiiiiiiiiiiiiiiin e 193
10.6.1. Accessing Static and Nonstatic (Automatic) Variablesccccoceveviiieenneee. 193
10.6.2. Setting the Current Scope Relative to the Call Stackccooveeiiiiininn, 194
10.6.3. How the Debugger Searches for Variables and Other Symbols 195
10.7. Displaying and Modifying Values Stored in RegiSterscccovervineiiiiiiiiniiiniennnenn. 195
10.8. Displaying the Decoded Instruction Stream of Your Programcccooeeeiiiiiiniennn, 196
10.9. Debugging Tasking (Multithread) Programsccooviiiiiiiiiniiiiiiiiiiiin e 197
10.9.1. Displaying Information About Tasks (Threads)ccoeviiiiiiiiniiiiiiinnennnn.. 197
10.9.2. Changing Task (Threads) CharacteriStiCsc..oeeuuuieiuniieiineiiineiiineiiieeinnns 198
10.10. Customizing the Debugger's HP DECwindows Motif for OpenVMS Interface 198
10.10.1. Defining the Startup Configuration of Debugger Viewsccccocevuvviiinnennn.e. 199
10.10.2. Displaying or Hiding Line Numbers inSource View and Instruction View 199
10.10.3. Modifying, Adding, Removing, and Resequencing Push Buttons 200
10.10.4. Editing the Debugger Resource Fileccovviiiiniiiiiiiiiniiiiniinccee, 202
10.11. Debugging Detached ProCesSesc..oeiuuniiiiiiiiiiiiiiiniiiie e 208

Part IV. PC Client Interface

Chapter 11. Using the Debugger PC Client/Server Interfacecceceevvueerueeisneenss 213

T L. INEPOAUCTION . eeuniiiiiiii ettt et e e 213
11.2. Installation of PC CLENtcoouiiiiiiiiiiiii e 213
11.3. Primary Clients and Secondary CHENtSc.oeiuiiiuiiiiiiiiiie e 213
11.4. The PC Client WOTKSPACEiuuiuneiieii ettt et 214
11.5. Establishing a Server CONNECTONccuueiuniiniiiii e 214
11.5.1. ChooSing @ TranSPOITccuueieeiiii et et eneens 215
11.5.2. Secondary CONNECHIONSeeuuieneiiii et e et e e eieeanae 215
11.6. Terminating a Server CONNECHIONvuuiuniiieii et 215
11.6.1. Exiting Both Client and Servercoviuiiiiiiiiiiii e 216
11.6.2. Exiting the Client Onlyocouiiiiiiiiiii e 216
11.6.3. Stopping Only the Serverooouiiiiiiiiiiie e 216
11.7. DOCUMENEALIONueiiineiiineiiii ettt ettt ettt et et et et et e eaaeenaneees 216

Part V. Advanced Topics

Chapter 12. Using the Heap ANALYZercccceiieivvneiicsssnniicnsssnnrecssssnsscssssssssssssssssens 223
12.1. Starting a Heap ANalyZer SESSIONccueiiriiiniiineiieiieiieeiieeieeieeieeieeaneeaneeanaeanens 223
12.1.1. Invoking the Heap ANAlyZercevviiiiiiiiiiiiii e 223
12.1.2. Viewing Heap Analyzer Windowsccceuviiiiiniiiniiieiieiiee e e eieeinenn 224
12.1.3. Viewing Heap Analyzer Pull-Down Menuscoceveiuiiiniiiniiineiieiieiiennnns 225
12.1.4. Viewing Heap Analyzer Context-Sensitive Menusceevveinreinniinnrinnennnns 226
12.1.5. Setting @ SOUIrce DITCCOIYivuiivniiieiiieiiei e et e et e e e e e e e e e e e eeaenes 226
12.1.6. Starting Your APPLICAtIONuviuneiineiieiiieineie et ei et e e e e e eieeaneaaneeans 227
12.1.7. Controlling the Speed of DiSplaycccviiiiiiiiiiiiiiii e, 227

12.2. Working with the Default DiSplayc.ueiiiiiiiiiiiiieiie e 228
12.2.1. Memory Map DISPIaYc.uviiiiiiiiiiieii et e e e 228
12.2.2. Options for Memory Map Displaycoeuviiiiiiiiiiiiieiiieii e e 228
12.2.3. Options for Further Informationcoooiiiiiiiiiiiiiii e 229
12.2.4. Requesting Traceback Informationcooeeviiiiiiiiiiniiiniiineie e, 231
12.2.5. Correlating Traceback Information with Source Codeccocevvvvneiineinnennnn.n. 231

12.3. Adjusting Type Determination and Displaycccooeiieiiniiiniiineiiiiiieee e 232

VSI Confidential, NDA Required vii

Debugger Manual

12.3.1. Options for Further Informationccoeviiiiiiiiiiiiiii e 232
12.3.2. Altering Type Determinationc.c.uviuneiuneieneiineieeieeieeie e eieeaneeeneennns 233
12.3.3. Altering the Views-and-Types Displaycoeueiiiiiiiiiiiiiiiiieiiieiineeeeieeaenns 234

12.4. Exiting the Heap ANALYZETovuniiiniiieie et e e 237
12.5. SAMPIE SESSION ...uieniiieii ettt e et et e e e e e et e e et e e e enns 237
12.5.1. Isolating Display of Interactive Commandcccoeeeviiiiiniiiiniiiinniinnennnne. 237
12.5.2. Adjusting Type Determinationcc.oveeuuneiiiniiiiniieineeineeiieeiie e 237
12.5.3. Requesting Traceback Informationcooeeviiiiiiiiiiniiiniineie e, 238
12.5.4. Correlating Traceback with Source Codecovvviiiiiiiiiiiiiiiieieeeens 238
12.5.5. Locating an Allocation Error in Source Codecccvviiiiiiiiiniiiiniiiiieiinneenen. 239
Chapter 13. Additional Convenience Featuresc.cccceeverersnrcssercssercscnnrcssnnscsanns 241
13.1. Using Debugger Command Procedurescocoviiiiiniiieiieineiieeie e 241
13.1.1. BaSIiC CONVENLIONSceuueeiineiiiieiiieetieeii et e e et e et e et e e et e et e eaieeaanes 241
13.1.2. Passing Parameters to Command Procedurescocovviiiiiiiiiiiiiineiieennn, 242

13.2. Using a Debugger Initialization Fileccoiiiiiiiiiiiiiiiii e 244
13.3. Logging a Debugging Session into a Filecoooiiiiiiiiiiiiinieeecee 244
13.4. Defining Symbols for Commands, Address Expressions, and Values 245
13.4.1. Defining Symbols for Commandscoeeuiiiiiiiiniiiiiiieii e 246
13.4.2. Defining Symbols for Address EXpressionsc.c.eeveviineiineiineinneinniinnennnnss 246
13.4.3. Defining Symbols for Valuesccooviiiiiiiiiiiiiiiie e 246

13.5. Assigning Commands to Function Keysccooiiiiiiiiiiiiiiiiie e, 247
13.5.1. BaSIiC CONVENLIONS ...ccuuueiiniiiieiiieeiieeii et e et e et et e et e e et e et e eaieeannes 247
13.5.2. Advanced TeChNIQUESccuuiiniiniiiiiii ettt e e e e 248

13.6. Using Control Structures to Enter Commandscceeuiiiiiiiniiiiiiiniineiineieeieeannens 248
13.6.1. FOR COommMAndcoouuiiiiniiiiiiiiiiii ettt et 249
13.6.2. IF COMMANGevniiiiiiiii et e ettt e e e e e e e e e e e e e e e e aeannas 249
13.6.3. REPEAT COmmMmAandccouuiiiuiiiiiiiiieiiie ettt 249
13.6.4. WHILE Commandcoouuiiiiuiiiieiiieeii e eai e 249
13.6.5. EXITLOOP COMMANGceevvunetiiiinetiiii et e et et e e e e e 249

13.7. Calling Routines Independently of Program Executioncoccovvuiiiiiiineinnninnnnn.. 250
Chapter 14. Debugging Special Casescocceeevvrrcsseresssnrcsssnncsssnresssrsssssrsssssssssnsscs 253
14.1. Debugging Optimized Codeviiniiiiiiieie et 253
14.1.1. Eliminated Variablesc.oviiiiiiiieiiei e 254
14.1.2. Changes in Coding Orderovuuiiieiieiiieie et e e eeens 255
14.1.3. Semantic Stepping (Alpha ONly)oeouviiniiiiiiiie e 255
14.1.4. USE Of REGISTETS ..uivuiineiieiieiie ettt e et e e e e e e e e eaeeanas 259
14.1.5. Split-Lifetime Variablesccoiiiiiiiiiiiiiiiiiniine e 259

14.2. Debugging Screen-Oriented Programscoveiiiiiiiiineiineiiie e, 262
14.2.1. Setting the Protection to Allocate a Terminalccoeeviiiiiiiiiiiineiieinnnes, 263

14.3. Debugging Multilanguage Programsoovuiiiiiiniiineiieiee e e e 264
14.3.1. Controlling the Current Debugger Languagecccoveveviiiiiiniiiniiiineennnnenn. 264
14.3.2. Specific Differences Among Languagescccoeeevuneiiiiiiiiiniiiineiiineenineeennn. 265

14.4. Recovering from Stack COITUPLIONvviuiiniiineiieiieiie e e e e e e e e e e e e 267
14.5. Debugging Exceptions and Condition Handlersccooeeiiiiiiiiiiiiiiiiiniinne. 267
14.5.1. Setting Breakpoints or Tracepoints on EXCeptionsccceceuuveiiiniiiinneennneene. 267
14.5.2. Resuming Execution at an Exception Breakpointccooeeevviiiniiiniinnn. 268
14.5.3. Effect of the Debugger on Condition Handlingc....ccooviiiniiiniini, 270
14.5.4. Exception-Related Built-In Symbolsc...cooiiiiiiiiiiiiiic 271

14.6. Debugging Exit Handlersooiiiiiiiiiii e 272
14.7. Debugging AST-Driven Programsoeiuiiiiiiiieiiieieei et e e e e 273
14.7.1. Disabling and Enabling the Delivery of ASTSccoiiiiiiiiiiiniiiiniiiiniieeene, 273

14.8. Debugging Translated Images (Alpha and Integrity servers Only)ccooeeevveennnienn. 273
14.9. Debugging Programs That Perform Synchronization or Communication Functions 273
14.10. Debugging Inlined ROULINESc..uiiiiiiiiiiiiiiiniiii e 273
Chapter 15. Debugging Multiprocess Programscccccceeceeicsverccssnncssnrcssnscssnenes 275
15.1. Basic Multiprocess Debugging Techniquesoceuveiiiiiiiiiiniiiiineineiie e eieeaneens 275

viii VSI Confidential, NDA Required

Debugger Manual

15.1.1. Starting a Multiprocess Debugging Sessionccoveiiiiiiiiiiiiineiiineeinnne. 275
15.2. Obtaining Information AbOUt ProCeSSESsuvivuiiiniiieieiiiee e 276
15.3. Process SPECIfICALIONuuiuuiiniiieii et e e et e e et e et e e et e e e e eaneeanaas 278
I5.4. PTOCESS SEIS ..euniiiiineii ettt ettt e ettt eaae 278
15.5. Debugger PromMPLSiueiiiiiie ettt ettt e aans 280
15.6. Process-Sensitive COMMANAScceuuiiiiniiiiiiiieiiie et 280
15.7. Visible Process and Process-Sensitive Commandsc.coeeeunvieiiniiiineiiineiiineennneen. 280
15.8. Controlling Process EXCCULIONc.uiiiiiiniiieiieie et e e e e 280
15.8.1. WAIT MOME ..ceviiiiieiiie e e 280
15.8.2. INterrupt MOAE ...oenieiiiiiie et et 281
15.8.3. STOP COmMMAINAcevuniiiiiiiineiiie it 282
15.9. Connecting to Another Programcooeviiiiiiiiiiniiiiiee e 282
15.10. Connecting to a Spawned ProCesSovuuiiiniiiniiieiieie et 282
15.11. Monitoring the Termination of IMagesceevuviiiiiieiiiiiieiie e 283
15.12. Releasing a Process From Debugger Controlcoevviviiiiiiiiiiiiiiii e 283
15.13. Terminating Specified PTrOCESSEScuuiiuniiiiiiieieiie e eens 284
15.14. Interrupting Program EXECUtIONc.oviuiiiiiiiniiieiiie et 284
15.15. Ending the Debugging SeSSIONc..viuuiiueiiieiieiieie e e e eie e e e e eeneeanns 284
15.16. Supplemental INfOrmationoeiiiiiiiiiiii e 285
15.16.1. Process Relationships When Debugg@ingccccvviiiiiiiiiiiiieiniiineieeieean, 285
15.16.2. Specifying Processes in Debugger Commandsccoeeuviiniiineiineiinnennnnnn. 285
15.16.3. Monitoring Process Activation and Terminationc.ceeveneeineennernnennnnn. 286
15.16.4. Interrupting the Execution of an Image to Connect It to the Debugger 287
15.16.5. Screen Mode Features for Multiprocess Debuggingccoeevviiviniinnnnnnn. 287
15.16.6. Setting Watchpoints in Global Sections (Alpha and Integrity servers Only) 287
15.16.7. System Requirements for Debuggingcccceovviviiiiiieiiniiineiieeieeieean, 288
LT R 21411 o) N 289
Chapter 16. Debugging Tasking Programsceiecsvercsssencssnrcssssncssssssssnsscssnns 293
16.1. Comparison of POSIX Threads and Ada Terminologyccoveevneiiniinniinniieiineennnen. 293
16.2. Sample Tasking Programscoouiviiuiiiiiiiiiii e 294
16.2.1. Sample C Multithread Programoceeiiiiiiiiiiniiiiniiiinie e 294
16.2.2. Sample Ada Tasking Programccoeoiviiiiiiiiiiiiiniiin e, 298
16.3. Specifying Tasks in Debugger Commandsoeiueiieiiieiineiieiiei e eieeenas 302
16.3.1. Definition of Active Task and Visible Taskcccoeviiiiiiiiiiiiiiiiiieeeen, 302
16.3.2. Ada Tasking SYNEAXeiuneiieiiieiieeie e e e e e e e e e et e eae e eenns 302
16.3.3. TasK D .oiiiiiie e 304
16.3.4. Task Built-In SYmbOISccouiiiiiiiiiiie e 305
16.4. Displaying Information About Taskscoouiiiiiiiiiiiiiiiie e 306
16.4.1. Displaying Information About POSIX Threads Tasksccoccovviviineiineennnne. 306
16.4.2. Displaying Task Information About Ada Taskscccoeeeviiiiiiniiiiniiiiniiinnien, 309
16.5. Changing Task CRaraCteriStiCseuueuureuneiineiieiieei et et eeee e e e eaneeaneeineenaannas 311
16.5.1. Putting Tasks on Hold to Control Task Switchingcccoceviiiiiiiiiinnnien, 312
16.6. Controlling and Monitoring EXECULIONcuuviiiiiieiieiieieei e eieeeieeaenas 312
16.6.1. Setting Task-Specific and Task-Independent Debugger Eventpoints 313
16.6.2. Setting Breakpoints on POSIX Threads Tasking Constructsceveneennnee. 313
16.6.3. Setting Breakpoints on Ada Task Bodies, Entry Calls, and Accept Statements 314
16.6.4. Monitoring Task EVENtscooiiiiiiiiiiiiiieie e 315
16.7. Additional Task-Debugging TOPICSveuiuniiineiieiie et e e e e e 318
16.7.1. Debugging Programs with Deadlock Conditionscccoveieviinniineiineennnnnn. 318
16.7.2. Automatic Stack Checking in the Debuggerc...ccoiiiiiiiiiiiiiiniiini, 320
16.7.3. Using Ctrl/Y When Debugging Ada Tasksccoceviiiiiiiiiiniiiniiiiiieieeen, 320

Part VI. Debugger Command Dictionary

Chapter 17. Debugger Command Dictionaryceeececceecnssencssnecsssnccssssccssssecssss 329
@ (Execute Procedure)couiiuiiiiiii e 332

VSI Confidential, NDA Required ix

Debugger Manual

ACTIVATE BREAK ...t 333
ACTIVATE TRACE ..ottt ettt e et e e e 335
ACTIVATE WATCH ..ottt et 336
ANALYZE/CRASH DUMP ..ottt 337
ANALYZE/PROCESS DUMPiiiiiiiiiiiiiiis ettt 338
ATTACH oottt ettt e e e et ees 339
(0 I PP SPPRN 340
(07 N[0 23 DN 5 PSPPSRt 345
CANCEL BREAK ..ottt et 346
CANCEL DISPLAY ..ottt ettt ettt e e et e e e 348
(07 N\ (0121 B\ (0] D) TP 349
CANCEL RADIX ..ottt ettt ettt et e et e et e eeanen 349
CANCEL SCOPE ...ttt e e e e et e e et e e e e e st e e e e e aba e e eraneaannaees 350
CANCEL SOURCE ...ttt 351
CANCEL TRAGCE ..ottt ettt 353
CANCEL TYPE/OVERRIDEcooiiiiiiiiiiiiiitii ettt e 355
CANCEL WATCH ..ottt ettt et e e et 356
CANCEL WINDOW ..ottt ettt et e e et e e e e e eeaens 356
CONNECT L.t ettt et e et e e eenens 357
(6153 1 O USRI 359
(61531 PP 361
(0773 1 PRSP 361
(15 /2SSOSR 362
DEACTIVATE BREAK ...ttt et et e e e e e et e et e e e e aaneeeaenas 362
DEACTIVATE TRACE ...ttt 364
DEACTIVATE WATCHciiiiiiiiiiii et 365
DECLARE ..ottt e e 366
DEFINE ..ottt e 368
DEFINE/KEY ..ttt ettt e e 370
DEFINE/PROCESS SET ...ttt ettt ettt ettt eeeeas 373
DELETE .ottt e et e et e et e e e e et e e e e et e et e e e et ain et e aaas 375
DELETE/KEY ..eiiiiiiiie ettt et e e et e e et e e e eaaieeaees 376
DIEPOSIT ..ottt e et e et e et e e et e e et e et s e e st e e st e e aaaeeesa e eaaneeaanaeaanns 377
DISABLE AST ittt ettt 382
DISCONNECT ...ttt ettt ettt e ettt e e e e et eaa e eeeneas 382
1D S o 7 PSPPI 384
DUMP ettt ees 389
2) 1 PSPPSR 391
ENABLE AST ottt et 392
EVALUATE ..ottt e ettt et e e et e e e et e eees 393
EVALUATE/ADDRESS ...ttt ettt et 395
EXAMINE ..ottt 396
2 L PSPPSR 405
EXITLOOP ...ttt ettt e et e e 407
EXPAND .ottt 408
EXTRACT .ttt ettt et e et e e ettt e e ettt e e e e e e eeees 409
FOR oot 411
GO ettt 412
5 021 5 PRSPPI 413
SRS PPRTSPPIN 414
IMONITOR .o ettt e e e e e s 415
1Y (0 Y 2 U UURPRURN 417
PTHREAD ...ttt e e et e e ettt e e ettt e e e e et e eeeees 419
(16 1 1 TR 420
REBOOT (Integrity servers and Alpha Only)cccoiiiiiiiiiiieieee e 422
REPEAT ..ottt ettt et et e e e e e e e e e et b e et e e e st e e st e e aan e e abn e esanaesenaeses 422
RERUN oottt et e e e et ettt e e s e et e e et e e eaa e e et e e st e e sbn e esaeesenaeses 423
RIUN Lottt e et e e e e e e e e et e et e et e et e et a e e b e et e aa e aanns 424

VSI Confidential, NDA Required

Debugger Manual

SAVE 426
SCROLL ..ot e 427
SEARCH ...t 429
S A 431
SELECT ..ot 432
SET ABORT_KEY ...t 435
SET ATSIGN L.ooiiiiiii e 436
SET BREAK ..o 437
SET DEFINE ..o e 444
SET EDITOR ..ot 445
SET EVENT _FACILITY ..ottt 447
SET IMAGEoiiiii 448
SET KEY o 449
SET LANGUAGE ..o 450
SET LANGUAGE/DYNAMIC ..ottt 451
SET LOG ..oiiiiiiiii e 452
SET MARGINS ..o 452
SET MODE ... 454
SET MODULE ..o e 457
SET OUTPUT ..o e 459
SET PROCESS ... 461
SET PROMPT ..o 462
SET RADIX ..o 463
SET SCOPE ..o 465
SET SEARCH ..ot 468
SET SOURCE ..ot 469
SET STEP ..o 472
SET TASK [THREADcoiiiiiiii e 475
SET TERMINAL ... e 478
SET TRACGE ..o 479
SET TYPE ..o 485
SET WATCHooiiiiiiii e 487
SET WINDOW ..o 493
SHOW ABORT _KEY ...ooiiiiiiiiiiii e 494
SHOW AST o 495
SHOW ATSIGN ..o 495
SHOW BREAK ... 496
SHOW CALLS ..o 497
SHOW DEFINE ...t 499
SHOW DISPLAY ...t 500
SHOW EDITORcooiiiiiiiiiiiii e 501
SHOW EVENT _FACILITY ...ooiiiiiiiiiiii e 501
SHOW EXIT_HANDLERS ... 502
SHOW IMAGE ... 503
SHOW KEY oo 504
SHOW LANGUAGEoiiiiiii 506
SHOW LOG ... 507
SHOW MARGINS ... 507
SHOW MODE ... 508
SHOW MODULE ..ot 509
SHOW OUTPUT ..o 511
SHOW PROCESS ... 512
SHOW RADIX ..., 515
SHOW SCOPE ... 516
SHOW SEARCHoouiiiiiiiiii e 517
SHOW SELECT ..ottt 518
SHOW SOURCE ...t 519
SHOW STACK ... 520

VSI Confidential, NDA Required Xi

Debugger Manual

SHOW STEP ... ettt e e e 523
SHOW SYMBOL ..ottt ettt e et e e et e eeees 524
SHOW TASK [THREAD ..ottt ettt 526
SHOW TERMINAL ...ttt e 529
SHOW TRACE ... et 529
SHOW TYPE ..ottt et ettt e e e 530
SHOW WATCHoiiiiiiie ettt e e e eeaas 531
SHOW WINDOW ..ottt ettt e 532
SPAWN ettt 533
START HEAP ANALYZER (Integrity SErvers only) «.....c..oeeuuueiiuniiiinneiiineeiineiiieeeiieeeinnees 534
STEP e et 535
N) SO PPR 540
SYMBOLIZE ...ttt e 541
004 2 PP SPPPN 542
72N 1 O RTOSPPP 544
WHILE ..ottt ettt ettt ettt e e e e e e eeaans 544
Appendix A. Predefined Key Functions 547
A.1. DEFAULT, GOLD, BLUE FUNCHONSettttiietiiiietiiiie et e e e et e e e e 547
A.2. Key Definitions Specific to LK201 Keyboardscoveuiiiiiiiiiiieiiieiieiie e 548
A.3. Keys That Scroll, Move, Expand, Contract DiSplayscccuveiuiiinriiiiiieiineineieeieeieeannes 548
A.4. Online Keypad Key DIagramsoeuuiiiiiiineiieiieiie e e e e e et e e e e e e eaneeeneeens 549
A.5. Debugger Key DEefiNItIONSccuuuiiiuuiiiiiiii ittt ettt e e e eeaas 550
Appendix B. Built-In Symbols and Logical Namesccccccevvercrcnicscnnccssnescssnnscssanccnns 557
B.1. SS§ DEBUG CONAItIONiiiiiiiiiiieeeeetiiiiiii et e e ettt e ettt ee e et ereti e e e eeeeeannns 557
B2, L0ZICAL INAITIES ...euiiiiiiiieeii ettt ettt e et e e e 557
B.3. BUilt-In SYMDOLS ..couniiiiii e 558
B.3.1. Specifying REGISIETSuiiueiiieiiiei ettt et e e e e et et e e e e e et e e e e enns 560
B.3.2. Constructing Identifiersc.uiiuniiiieiiieiie i e 562
B.3.3. Counting Parameters Passed to Command Proceduresccceeviviniiniiniinnnnnnen. 563
B.3.4. Determining the Debugger Interface (Command or HP DECwindows Motif for
(0515141 1 T 563
B.3.5. Controlling the Input RadiXccoviiiiiiiiiiiii e 563
B.3.6. Specifying Program Locations and the Current Value of an Entityc...ccoeeeennnt. 564
B.3.7. Using Symbols and Operators in Address EXpressionsc.c.cceuvveeuniinneiiineennne, 565
B.3.8. Obtaining Information About EXCEPHIONScc.oviiuiiiiiiiiiiniiiiiiiiincneciieceie e 568
B.3.9. Specifying the Current, Next, and Previous Scope on the Call Stackc......... 568
Appendix C. Summary of Debugger Support for Languages 571
(O T 0)< o4 T PP P 571
C.2. GNAT Ada (Integrity SEIVETS ONLY) «...ccuuuiiiuniiiinitiii ettt ettt ettt e e e 572
(O T 5 1 N - S 572
C.3.1. Ada Names and SYMDOISoiuiiiiiiiiiiiie et e e e 572
C.3.2. Operators and EXPIrESSIONSc.uveuneiuneiuneiieineeiieeineeineeietieeneeaneeaneeneeneanaannaes 575
C.3.3. DAta TYPES oenieniineiie ettt ettt 576
C.3.4. Compiling and LinKingcc.oveeuuiiiiiiiiiii e 577
C.3.5. S0UICE DISPIAY ..evniineiieie et 578
C.3.6. EDIT COMMANMoovtniiiiiiiiiiii e et eaa e 578
C.3.7. GO and STEP COmMANASoeeuuiiiiniiiieiiiee e 579
C.3.8. Debugging Ada Library Packagescccoeeiuiiiiiiiiiiiiiiiniiiii e, 579
C.3.9. Predefined Breakpointseieeiieieeiieiieii e e e e e 580
C.3.10. Monitoring EXCEPLIONSc.uuiiuiineiieiieie et et et et et e e e e e e e e e e e e e aneaannas 580
C.3.11. Examining and Manipulating Dataccooiiiiiiiiiiiiiiie e 582
C.3.12. Module Names and Path Namescc.coeiiiiiiiiiiiiiiiiin e 583
C.3.13. Symbol Lookup CONVENTIONSvuurineiineiineiieiieeeeeieeieeieereeeaneeaeeineenneenaenns 584
C.3.14. Setting MOAULESieniiiii ettt et e e e e e e e e e e e e e eans 584
C.3.15. Resolving Overloaded Names and Symbolscoceuviiiiiiiiiiiiiieiineiieeiieeeeineen. 585
C.3.16. CALL COMMANG «...uiiitniiiiiiiieiii ettt et ettt et e et e e e e eeia e 585

xii

VSI Confidential, NDA Required

Debugger Manual

C. BASIC o et 586
C.4.1. Operators in Language EXPIeSSIONSoiuuiiiniiiniiiiieiieiieeieeeeieeae e e eieeinaannns 586
C.4.2. Constructs in Language and Address EXpressionscoeeuvveeeiiriinniineiineinneinnennnnns 586
Cid.3. Data TYPeS o eneneiie ittt e 587
C.4.4. Compiling for DebuGZINgc.viuiiiiiiiiii et e e 587
Cid.5. CONSLANES .. eutnetn ettt ettt e e e e et et e et et e e et et et et et e e et e e ans 587
C.4.6. Evaluating EXPIreSSIONSuovuueiuneiieiieeii et et et et e e et e et e et e e e e e e aneeaneeaneeaneenns 587
(O B 31 T AN 1151 o3 N 587
C.4.8. Stepping iNt0 ROULINESuviituiiiiiiiieiii e 587
C.4.9. Symbolic REfEIENCESuniiiiiiiiiie et e e e e 588

(O3 T 21 1 13 OSSP 588
C.5.1. Operators in Language EXPIeSSIONSovuueiiniiineiiiieiieiieeieieeieeaeeieeieeiaannns 588
C.5.2. Constructs in Language and Address EXpressionscoeeveeeeiineiineiineiineenneinnennnnns 589
5.3, Data TYPOS eneneineiei ettt e 589

O3 T PP SPPPTT PPN 589
C.6.1. Operators in Language EXPressionscc.cveeuiiiiiieiiiniiiniiineiii e eeniee 590
C.6.2. Constructs in Language and Address EXpressionscoeevveeeiinrieneiineiineenneinnennnnns 590
C.0.3. Data TYPOS eneneineine ittt 591
(O R O T o3 113 11 74 PP 591
C.6.5. Static and Nonstatic Variablesc.oviiiiiiiiiiiiiii e 592
C.6.6. Scalar Variablescouuiiiiiiiiiiiii e 592
O RN s ¢) £ T PPN 592
C.6.8. CRAracCter SEIINESvvuiineiineiie et e e e e e et e et e e et e et e e e et e e eaneeaneeaneenneees 592
C.6.9. Structures and UNIONSoiuneiueiiieiieei ettt et e e e e et e e e e e e e e e e aaanaaannas 593

C.7. C++ Version 5.5 and Later (Alpha and Integrity servers Only)ccoiviiiiiiiiiniiiniiinnennan. 593
C.7.1. Operators in Language EXPresSionsc.cveeuiiiiiiiiiniiiniiineiiieei e eeninee 594
C.7.2. Constructs in Language and Address EXpressionscoeeveeeeiineiineiineiineenneinnennnnns 595
C.7.3. Data TYPOS o eneineiieie ittt et 595
(O O T o RT3 113 L1 74 PP 596
C.7.5. Displaying Information About @ CIassceeuviiniiiniiiiiieiiie e ee e 596
C.7.6. Displaying Information About an ObJeCtceevuiiiniiiiiiiiiiiiiei e 597
C.7.7. Setting WatCRPOINLSiiuiiniiiieii ettt e e e e e et e e e e e aannas 599
C.7.8. Debugg@ing FUNCHONSc.uuiiiiiieiieiie e e e e e e e e e eenns 599
C.7.9. Limitations on Debugger Support for CH+ ... 602

(O3 T 01210) ISP 607
C.8.1. Operators in Language EXPIeSSIONSoiuueiiniiineiiiieeieiieeieieeieeaeeieeieeiaennns 608
C.8.2. Constructs in Language and Address EXpressionscoeeveeeviineieneiineiineenneinnennnnns 608
C.8.3. Data TYPCS eueeneiieite ittt et 608
C.8.4. S0UICE DISPIAY ..evneiiniiiei ettt et e aes 609
C.8.5. COBOL INITIALIZE Statement and Arrays (Alpha Only)ccooceiviiiniiiiiiiinninnan. 609

CL0. FOTTIAN ..ot ettt et 609
C.9.1. Operators in Language EXPresSionscc.cveeuiiiiiiieiiiniiiniiineiiineei e eeiinee 609
C.9.2. Constructs in Language and Address EXpressionscoeeveeeeiineieneiineiineenneinnennnnns 610
C.9.3. Predefined SymDOIScouiiiniiiiie e 610
C.0.4, Data TYPeS o eneeneineie ittt 610
C.9.5. Initialization COEceuuiiiiniiiii i 611

CL10. MACRO32 ittt ettt eaaan 612
C.10.1. Operators in Language EXPresSionsovieeieriineiineiieiieiineiieeiieeieeieeieenneenns 612
C.10.2. Constructs in Language and Address EXpressionsoeeevveeviinriineiineeineiineiinaannns 613
(O L0 T B 1 -) o 1T PPN 613
C.10.4. MACRO--32 Compiler (AMACRO - Alpha Only; IMACRO - Integrity servers Only) ... 614

C.11. MACRO--64 (AIPha ONLY) oouuiiiniiiiiiii et 616
C.11.1. Operators in Language EXPreSSIONSoeeuiiiuiiineiineiieiieiieeiieeineeinerieeneenaennnns 616
C.11.2. Constructs in Language and Address EXpressionscoeeveeeviinviineiineiineiinenineannns 617
G130 Data TYPCS ettt ettt e e e e e e 617

Cl2. PASCAL .ottt 618
C.12.1. Operators in Language EXPresSionsoveeeeieriineiineiieeieiineiieeiieeieeineeieenneenns 618
C.12.2. Constructs in Language and Address EXpressionscoeeevveeviineiineiineiineiinainnaannns 618

VSI Confidential, NDA Required Xiii

Debugger Manual

C.12.3. Predefined SYMDOLSoiuniiiiiiie et 619

C.12.4. Built-In FUNCHONS ...c.uuiiitiiiiiiiii e 619

(O B T B 1 - % o 1T PPN 619

C.12.6. Additional InfOrmationceouuiiuniiieiiiii et e e e ees 620

CL12.7. RESLIICHONS ..ueeuiiietin it et et e e e e e et e et e e e et e e e e e e e e e e e e e e e et e eaeeaeeneenns 620

(O B T o 7 B N 1) o 0) 17 PN 620
C.13.1. Operators in Language EXPresSionsoveeeieriineiineiieiieiineieeiieeieeineeieenneeens 620

C.13.2. Constructs in Language and Address EXpressionsceeeevveeviineiineiineiineiineinneannns 621

(O B T B B 1 - T) o 1T PPN 621

C.13.4. Static and Nonstatic Variablescc.vvieiiiiiiiiiieii e 622

C.13.5. Examining and Manipulating Dataccooiiiiiiiiiiiii e 622

C.14. Language UNKNOWN ...ttt ettt e e et e aeanees 623
C.14.1. Operators in Language EXPresSionsoeieeieriineiineiieiieiineineiieeieeineeineenneeens 623

C.14.2. Constructs in Language and Address EXpressionsoeeevveeviinriineiineiineiineinneannns 624

C.14.3. Predefined SYMDOLSiiuniiiiiiiie et e e e ees 624

(O R b 1 - R % o 1T PPN 625
Appendix D. EIGHTQUEENS.C 627
D.1. EIGHTQUEENS.C ...ttt ettt ettt e e e 627

D.2. SQUEENS.C ..ottt ettt ettt e e e e e et e et e e et e e s e e et e e st e e ea e e eaa e e bt e e aan e aans 628
INAEX cevrrirnriirinrieninicssnnicssnnessssnsssssnssssnssessnsssssnsssssnssss 631

Xiv

VSI Confidential, NDA Required

Part l. Introduction to the Debugger

VSI Confidential, NDA Required

VSI Confidential, NDA Required

Introduction to the Debugger

Table of Contents

Chapter 1. Introduction to the Debuggercccoceievvueicsvnricssnricssnnicssnnecsssncssssncssssscsssncces D

1.1, Overview Of the DebUZZETo.iiiiii et 5
L.1.1. Functional FEAtUIEScc..oeiiuuiiiiiiiii ettt 5
1.1.2. Convenience FEAtUIESc..uviiuuiiiiiriiii ettt ettt e eeeeeaes 7

1.2. Preparing an Executable Image for Debuggingooiuiiiiiiiiiiiiii e 9
1.2.1. Compiling a Program for Debuggingcocoiiiiiiiiiiiiiii e 9
1.2.2. Linking a Program for Debuggingccoouiiiiiiiiiiiiiie e 9
1.2.3. Controlling Debugger Activation with the LINK and RUN Commands 10

1.3. Debugging a Program with the Kept Debuggerccoiiiiiiiiiiiiiii e, 11
1.3.1. Starting the Kept DebUZEervuiiiiiiie e 11
1.3.2. When Your Program Completes EXecutioncooeeiiiiiiiiiiiiiiiiiiniieceiecee, 14
1.3.3. Rerunning the Same Program from the Kept Debuggercoooiiiiiiiiiiiiininnnn. 14
1.3.4. Running Another Program from the Kept Debuggerccooeiiiiiiiiiiiiiiiiiinin, 15

1.4. Interrupting Program Execution and Aborting Debugger Commandsccccveeuvieniienienn..n. 15

1.5. Pausing and Resuming a Debugging SeSSIONcc.iiiuiiiiiiiiiiiiie et 16

1.6. Starting the Debugger by Running a Programcoooiiiiiiiiiiiiiiii e 16

1.7. Starting the Debugger After Interrupting a Running Programcoooiiiiiiinnn. 17

1.8. Ending a Debugging SESSIONcc.utiuiiniiiiii et et 18

1.9. Debugging a Program on a Workstation Running DECwindows Motifc.occoiiiiininn.n. 18

1.10. Debugging a Program from a PC Running the Debug Clientccoooiiiiiiiiiininin. 19

1.11. Debugging Detached Processes That Run with No CLIcoooiiiiiiiiiiiiiieee 20

1.12. Configuring Process Quotas for the Debuggercooooiiiiiiiiiiiiiii e 20

1.13. Debugger Command SUMMATYtuniiniii ittt e e e e e e ee e eanees 20
1.13.1. Starting and Ending a Debugging SeSSI0Ncc.oeiuiiiniiiiiiiiiieiie e 20
1.13.2. Controlling and Monitoring Program Executioncc.ccoiiiiiiiiiiiiiiiiiiiine, 21
1.13.3. Examining and Manipulating Dataoooiiiiiiiiiiiii e 22
1.13.4. Controlling Type Selection and Radixcooieiiiiiiiiiiiiiiiiii e 22
1.13.5. Controlling Symbol Searches and Symbolizationccccoiiiiiiiiiiiiiiiiiiien, 22
1.13.6. Displaying Source Codeoiiuiiuiiiiiii e 22
1.13.7. USING SCreen MOACouuiiiiiiieii ettt e e 23
1.13.8. Editing Source COdeeumiiiiiieii ettt 23
1.13.9. Defining SYMDOLScooiiiiieiie e 23
1.13.10. Using Keypad MOccoiimiiiiiieiie et 24
1.13.11. Using Command Procedures, Log Files, and Initialization Files 24
1.13.12. USing Control SIIUCTUIEStuuiinitneiieii e et e et e e e e e e eenaaes 24
1.13.13. Debugging Multiprocess Programsccooeeiiiiiiniiiiiiie e 24

1.13.14. Additional Commands

VSI Confidential, NDA Required 3

Introduction to the Debugger

VSI Confidential, NDA Required

Introduction to the Debugger

Chapter 1. Introduction to the
Debugger

This chapter briefly describes the command interface of the OpenVMS Debugger,and provides the following
information:

* An overview of debugger features

¢ Instructions to compile and link your program for debugging
* Instructions to start and end a debugging session

» A list of the debugger commands grouped by function

For a tutorial introduction to basic debugging tasks, see Chapter 2, Getting Started with the Debugger .

1.1. Overview of the Debugger

The OpenVMS Debugger is a tool to locate run-time programming or logic errors, also known as bugs, in a program
that has been compiled and linked successfully but does not run correctly. For example, the program might give
incorrect output, go into an infinite loop,or terminate prematurely.

By using the OpenVMS Debugger,you can locate program bugs by observing and manipulating the program
interactively as it executes. Debugger commands enable you to:

* Control and observe execution of the program
* Display and browse through the source code of the program to identify instructions and variables worth scrutiny

» Suspend program execution at specified points in order to monitor changes in variables and other program
entities

» Change the value of a variable and, in some cases, test the modification without having to edit the source code,
recompile, and relink

* Trace the execution path of the program
* Monitor exception conditions and language-specific events

These are basic debugging techniques. After locating program errors,you can edit the source code and compile,
link, execute, and test the corrected version.

As you use the debugger and its documentation, you will discover and develop variations on the basic techniques.
You can also customize the debugger for your own needs. Section 1.1.1, “Functional Features”summarizes the
features of the OpenVMS Debugger.

1.1.1. Functional Features

Programming Language Support

On Alpha processors, you can use the debugger with programs written in the following HPE languages:

Ada BASIC BLISS C

C++ COBOL Fortran MACRO-32 Note that MACRO-32 must be compiled
with the AMACRO compiler.

MACRO--64 Pascal PL/I

VSI Confidential, NDA Required 5

Introduction to the Debugger

On Integrity server, you can use the debugger with programs written in the following HPE languages:

Assembler BASIC BLISS C
(IAS)
C++ COBOL Fortran MACRO-32. Note that MACRO-32 must be compiled

with the AMACRO compiler.

IMACRO PASCAL

The debugger recognizes the syntax, data types, operators, expressions,scoping rules, and other constructs of
a supported language. You can change the debugging context from one language to another (with the SET
LANGUAGE command) during a debugging session.

Symbolic Debugging

The debugger is a symbolic debugger. You can refer to program locations by the symbols used in your program
-- the names of variables, routines, labels, and so on. You can also specify explicit memory addresses or machine
registers if you choose.

Support for All Data Types

The debugger recognizes the data types generated by the compilers of all supported languages, such as integer,
floating-point, enumeration, record,array, and so on, and displays the values of each program variable according
to its declared type.

Flexible Data Format

With the debugger, you can enter and display a variety of data forms and data types. The source language of the
program determines the default format for the entry and display of data. However, you can select other formats
as needed.

Starting or Resuming Program Execution

Once the program is under control of the debugger, you can start or resume program execution with the GO or
STEP command. The GO command causes the program to execute until specified events occur (the PC points to
a designated line of code, a variable is modified, an exception is signaled, or the program terminates). You can
use the STEP command to execute a specified number instructions or lines of source code, or until the program
reaches the next instruction of a specified class.

Breakpoints

You can set a breakpoint with the SET BREAK command, to suspend program execution at a specified location
in order to check the current status of the program. You can also direct the debugger to suspend execution when
the program is about to execute an instruction of a specific class. You can also suspend execution when certain
events occur, such as exceptions and tasking (multithread) events.

Tracepoints

You can set a tracepoint with the SET TRACE command, to cause the debugger to report each time that program
execution reaches a specified location (that is, each time the program counter (PC) references that location). As
with the SET BREAK command, you can also trace the occurrence of classes of instructions and monitor the
occurrence of certain events, such as exceptions and tasking (multithread) events.

Watchpoints

You can set a watchpoint with the SET WATCH command to cause the debugger to suspend program execution
whenever a particular variable (or other specified memory location) has been modified, at which point the debugger
reports the old and new values of the variable.

6 VSI Confidential, NDA Required

Introduction to the Debugger

Manipulation of Variables and Program Locations
You can use the EXAMINE command to determine the value of a variable or memory location. You can use the

DEPOSIT command to change that value. You can then continue execution of the program to determine the effect
of the change without having to recompile, relink, and rerun the program.

Evaluation of Expressions

You can use the EVALUATE command to compute the value of a source-language expression or an address
expression in the syntax of the language to which the debugger is currently set.

Control Structures

You can use logical control structures (FOR, IF, REPEAT, WHILE) in commands to control the execution of other
commands.

Shareable Image Debugging
You can debug shareable images (images that are not directly executable). The SET IMAGE command enables

you to access the symbols declared in as hareable image (that was compiled and linked with the /DEBUG
qualifiers).

Multiprocess Debugging
You can debug multiprocess programs (programs that run in more than one process). The SHOW PROCESS and

SET PROCESS commands enable you to display process information and to control the execution of images in
individual processes.

Task Debugging
You can debug tasking programs (also known as multithread programs). These programs use HPE POSIX Threads
Library or POSIX 1003.1b services, or use language-specific tasking services (for example, Ada tasking programs).

The SHOW TASK and SET TASK commands enable you to display task information and to control the execution
of individual tasks.

Terminal and Workstation Support

The debugger supports all VT-series terminals and VAX workstations.

1.1.2. Convenience Features

Online Help

Online help is always available during a debugging session. Online help contains information about all debugger
commands and additional selected topics.

Source Code Display

During a debugging session, you can display the source code for program modules written in any of the languages
supported by the OpenVMS Debugger.

Screen Mode

In screen mode, you can capture and display various kinds of information in scrollable display units. You can move
these display units around the screen and resize them as needed. Automatically updated source, instruction, and
register displays units are available. You can selectively direct debugger input, output, and diagnostic messages to
specific display units. You can also create display units to capture the output of specific command sequences.

VSI Confidential, NDA Required 7

Introduction to the Debugger

Kept Debugger

The kept debugger enables you to run different program images or rerun the same image from the current debugging
session without having to first exit and restart the debugger. When you rerun a program, you can choose to retain
or cancel any previously set breakpoints, as well as most trace points and watch points.

DECwindows Motif User Interface

The OpenVMS Debugger has an optional HP DECwindows Motif for OpenVMS graphical user interface (GUI)
that provides access to common debugger commands by means of push buttons, pull down menus, and pop
up menus. The GUI is an optional enhancement to the debugger command line interface that is available on
workstations running DECwindows Motif. When using the GUI, you have full command-line access to all
debugger commands that are relevant within a DECwindows Motif environment.

Microsoft Windows Interface

The OpenVMS Debugger has an optional client/server configuration that allows you to access the debugger and
its functions from a PC running on your supplied Microsoft operating system. This debugger implementation has
a debug server that runs on OpenVMS on an Alpha or Integrity server CPU, and a debug client interface that runs
on Microsoft operating systems on an Intel or Alpha CPU.

Client/Server Configuration

The client/server configuration allows you to debug programs that run on an OpenVMS node remotely from
another OpenVMS node using the DECwindows Motif user interface, or from a PC using the Microsoft Windows
interface. Up to 31 debug clients can simultaneously access the same debug server,which allows many debugging
options.

Keypad Mode

When you start the debugger, several predefined debugger command sequences are assigned to the keys of the
numeric keypad of the VT52, VT100, and LK201 keyboards. You can also create your own key definitions.

Source Editing

As you find errors during a debugging session, you can use the EDIT command to use any editor available on
your system. You can specify the editor with the SET EDITOR command. If you use the Language-Sensitive
Editor (LSE), the editing cursor is automatically positioned within the source file corresponding to the source code
that appears in the screen-mode source display.

Command Procedures

You can direct the debugger to execute a command procedure (a file of debugger commands) to re-create a
debugging session, to continue a previous session, or to avoid typing the same debugger commands many times
during a debugging session. In addition, you can pass parameters to command procedures.

Initialization Files
You can create an initialization file that contains debugger commands to set default debugging modes, screen

display definitions, keypad key definitions,symbol definitions, and so on. Upon start up, the OpenVMS Debugger
automatically executes the initialization file to create the predefined debugging environment.

Log Files

You can create a log file to contain a record of command input and debugger output. You can then use the log file to
analyze the debugging session, or edit the file for use as a command procedure in subsequent debugging sessions.

8 VSI Confidential, NDA Required

Introduction to the Debugger

Symbol Definitions

You can define your own symbols to represent lengthy commands, address expressions, or values in abbreviated
form.

1.2. Preparing an Executable Image for
Debugging

To take full advantage of symbolic debugging, you must first compile and link the program's modules (compilation
units) using the compiler and linker /DEBUG qualifiers as explained in Section 1.2.1, “Compiling a Program for
Debugging”and Section 1.2.2, “Linking a Program for Debugging”.

1.2.1. Compiling a Program for Debugging

Example 1.1, “Compiling a Program with the /DEBUG Qualifier”’shows how to compile (for debugging) a C
program, FORMS. EXE, that consists of two source modules: FORMS. C and | NVENTCORY. C. FORMS. Cis the
main program module.

Example 1.1. Compiling a Program with the /DEBUG Qualifier
$ CC/ DEBUG NOOPTI M ZE | NVENTCORY, FORMS

Note that the/DEBUG and /NOOPTIMIZE qualifiers are compiler command defaults for some languages. These
qualifiers are used in the example for emphasis. (For information about compiling programs in a specific language,
see the documentation for that language.)

The /DEBUG qualifier in the compiler command in Example 1.1, “Compiling a Program with the /DEBUG
Qualifier” directs the compiler to include the symbol information associated with FORMS. Cand | NVENTORY. C
in object modules FORMS. OBJ and | NVENTORY. OBJ, respectively. This enables you to refer to the symbolic
names of variables, routines,and other declared symbols while debugging the program. Only object files created
with the /DEBUG qualifier contain symbol information. You can control whether to include all symbol information
or only that required to trace program flow (see Section 5.1.1, “Compiling”).

Some compilers optimize the object code to reduce the size of the program or to make it run faster. In such
cases the object code does not always match the source code, which can make debugging more difficult. To
avoid this, compile the program with the /NOOPTIMIZE command qualifier (or equivalent). After the non-
optimized program has been debugged, you can recompile and test it again without the /NOOPTIMIZE qualifier
to take advantage of optimization. Section 14.1, “Debugging Optimized Code” describes some of the effects of
optimization.

1.2.2. Linking a Program for Debugging

Example 1.2, “Linking a Program with the /DEBUG Qualifier” shows how to link a C program, FORMS. EXE that
consists of two source modules: FORMS. C and | NVENTCORY. C. FORMS. Cis the main program module. Both
source modules were compiled with the /DEBUG qualifier (see Example 1.1, “Compiling a Program with the /
DEBUG Qualifier”).

Example 1.2. Linking a Program with the /DEBUG Qualifier
$ LI NK/ DEBUG FORMS, | NVENTORY

In Example 1.2,the /DEBUG qualifier in the LINK command directs the linker to include in the executable image
all symbol information that is contained in the object modules being linked. Most languages require that you
specify all included object modules in the LINK command. See Section 5.1.3, “Linking” for more details on how
to control symbol information with the LINK command.

VSI Confidential, NDA Required 9

Introduction to the Debugger

On Alpha and Integrity server systems, you can now debug programs that have been linked with the /DSF qualifier
(and therefore have a separate debug symbol file).The /DSF qualifier to the LINK command directs the linker
to create a separate. DSF file to contain the symbol information. This allows more flexible debugging options.
Debugging such a program requires the following:

* The name of the . DSF file must match the name of the . EXE file being debugged.
* You must define DBGSI MAGE_DSF_PATH to point to the directory that contains the . DSF file.
For example:

$ CC/ DEBUG NOOPTI M ZE TESTPROGRAM

$ LI NK/ DSF=TESTDI SK: [TESTDI R] TESTPROGRAM DSF TESTPROGRAM
$ DEFI NE DBG$HlI MAGE_DSF_PATH TESTDI SK: [TESTDI R]

$ DEBUG KEEP TESTPROGRAM

See Section 5.1.5, “Creating Separate Symbol Files (Alpha Only)” for more information about debugging programs
that have separate symbol files. See the OpenVMS Linker Utility Manual for more information about using the
/DSF qualifier.

1.2.3. Controlling Debugger Activation with the LINK
and RUN Commands

In addition to passing symbol information to the executable image, the LINK /DEBUG command causes the image
activator to start the debugger if you execute the resulting image with the DCL command RUN. (See Section 1.6,
“Starting the Debugger by Running a Program”.)

You can also run an image compiled and linked with the /DEBUG command qualifiers without invoking the
debugger. To do so, use the/NODEBUG qualifier in the DCL command RUN. For example:

$ RUN NODEBUG FORVS

This is convenient for checking your program once you think it is error free. Note that the data required by the
debugger occupies space within the executable image. When your program is correct, you can link your program
again without the /DEBUG qualifier. This creates an image with only trace back data in the debug symbol table,
which creates a smaller executable file.

Table 1.1, “Controlling Debugger Activation with the LINK and RUN Commands” summarizes how to control
debugger activation with the LINK and RUN command qualifiers. Note that the LINK command qualifiers /
[NOIDEBUG and /[NO]TRACEBACK affect not only debuggeractivation but also the maximum level of symbol
information provided when debugging.

Table 1.1. Controlling Debugger Activation with the LINK and RUN Commands

LINK Command Qualifier To Run Program To Run Program Maximum Symbol

without Debugger |with Debugger Information
Available !

/DEBUG ! RUN /NODEBUG |RUN Full

None or/ TRACEBACK or /NODEBUG * |RUN RUN /DEBUG Only traceback *

/INOTRACEBACK RUN RUN /DEBUG ° None

/DSF® RUN DEBUG /KEEP’ |Full

/DSF® RUN DEBUG /SERVER’ |Full

10n OpenVMS Alpha systems, anything that uses system service interception (SSI), such as the debugger or the Heap Analyzer, is unable to
intercept system service call images activated by shared linkage. The image activator, therefore, avoids shared linkage for images linked or
run with /DEBUG, and instead activates private image copies. This affects performance of user applications under debugger or Heap Analyzer
control, as images activated by shared linkage run faster.

SLINK /TRACEBACK (or LINK /NODEBUG) is a LINK command default.

10 VSI Confidential, NDA Required

Introduction to the Debugger

“*Traceback information includes compiler-generated line numbers and the names of routines and modules (compilation units). This symbol
information is used by the traceback condition handler to identify the PC value (where execution is paused) and the active calls when a run-
time error has occurred. The information is also used by the debugger SHOW CALLS command (see Section 2.3.3, “Determining Where
Execution Is Paused”).

>The RUN /DEBUG command allows you to run the debugger, but if you entered the LINK /NOTRACEBACK command, you will be
unable to do symbolic debugging.

6Alpha and Integrity server only.

7Logical name DBGSDSF_| MAGE_NAME must point to the directorythat contains the .DSF file (see Section 1.2.2, “Linking a Program for
Debugging”).

1.3. Debugging a Program with the Kept
Debugger

You can run the OpenVMS Debugger as the kept debugger, which allows you to rerun the same program again and
again, or to run different programs, all without terminating the debugging session. This section explains how to:

« Start the kept debugger and then bring a program under debugger control
* Rerun the same program from the current debugging session

* Run another program from the current debugging session

* Interrupt program execution and abort debugger commands

* Interrupt a debugging session and then return to the debugging session

1.3.1. Starting the Kept Debugger

This section explains how to start the kept debugger from DCL level ($) and bring your program under debugger
control. Section 1.6, “Starting the Debugger by Running a Program” and Section 1.7, “Starting the Debugger After
Interrupting a Running Program” describe other ways to invoke the debugger.

Using the kept debugger enables you to use the debugger's RERUN and RUN features explained in Section 1.3.3,
“Rerunning the Same Program from the Kept Debugger” and Section 1.3.4, “Running Another Program from the
Kept Debugger”, respectively.

Note

The following problems or restrictions are specific to the kept debugger:
 Ifaprevious debugger process has not completely stopped,you may see the following error at debugger startup:

YOEBUG- E- | NTERR, internal debugger error in
DBGVRPC\ DBGSWAI T_FOR_EVENT got an ACK

To fix this problem, exit the debugger. Then use the DCL command SHOW PROCESS /SUBPROCESS to
check whether any debugger subprocesses exist. If so, stop them by using the DCL command STOP and then
restart the debugger.

* Running a sequence of many large programs can cause the debugger to fail because it has run out of memory,
global sections, or some other resource.

To fix this problem, exit the debugger and restart the debugging session.

To start the kept debugger and bring your program under debugger control:

VSI Confidential, NDA Required 11

Introduction to the Debugger

1. Verify that you have compiled and linked the program as explained in Section 1.2, “Preparing an Executable
Image for Debugging”.

2. Enter the following command line:
$ DEBUG KEEP

Upon startup, the debugger displays its banner, executes any user-defined initialization file (see Section 13.2,
“Using a Debugger Initialization File”),and displays its DBG> prompt to indicate that you can now enter
debugger commands, as explained in Section 2.1, “Entering Debugger Commands and Accessing Online Help”.

3. Bring your program under debugger control with the debugger RUN command,specifying the executable image
of your program as the parameter. For example:

DBG> RUN FORMVS
YOEBUG- | - I NI TI AL, Language: C, Modul e: FORMS
DBG>

The message displayed indicates that this debugging session is initialized fora C program and that the name
of the main program unit (the module containing the image transfer address) is FORMS. The initialization sets
up language-dependent debugger parameters. These parameters control the way the debugger parses names and
expressions, formats debugger output, and so on. See Section 4.1.9, “Language Dependencies and the Current
Language” for more information about language-dependent parameters.

The debugger suspends program execution (by setting a temporary breakpoint) at the start of the main program
unit or, with certain programs, at the start of some initialization code, at which point the debugger displays the
following message:

YDEBUG- | - NOTATMVAI N, Type GO to reach nain program

With some of these programs (for example, Ada programs), the temporary breakpoint enables you to debug
the initialization code using full symbolic information. See Section 14.3, “Debugging Multilanguage Programs”
formore information.

At this point, you can debug your program as explained in Chapter 2, Getting Started with the Debugger .

RUN and RERUN Command Options for Programs That Require
Arguments

Some programs require arguments. This section explains how to use the RUN and RERUN commands with the
/ARGUMENTS and /COMMAND qualifiers when debugging a program with the kept debugger.

After starting the kept debugger, you can specify the image to be debugged by entering the RUN command with
an image name, or the RUN /COMMAND command with a DCL foreign command. Note that you can specify a
DCL foreign command only with the /COMMAND qualifier to the RUN command.

You can specify a list of arguments with the / ARGUMENTS qualifier to the RUN and RERUN commands.

The different methods are shown in the following example of a debugger session. The program to be debugged is
echoar gs. c, a program that echoes the input arguments to the terminal:

#i ncl ude
<stdio. h>main(int argc, char *argv[]){ int i; for (i = O;
< argc; i++) printf("%\n", argv[i]);}

Compile and link the program as follows:

$ cc/ debug/ noopt echoargs.c
$ |ink/ debug echoargs

Define a DCL foreign command as follows:

12 VSI Confidential, NDA Required

Introduction to the Debugger

$ ECHO == "$ sys$di sk: [] echoar gs. exe"

Invoke the kept debugger. The debugger session in the example that follows shows three ways of passing
arguments:

* RUN with /COMMAND and /ARGUMENTS
* RERUN with /ARGUMENTS

* RUN with /ARGUMENTS and image name

RUN with /COMMAND and /ARGUMENTS

This section of the debugger session shows the use of the debugger RUN command with the /COMMAND
and /ARGUMENTS qualifiers. The /COMMAND qualifier specifies DCL foreign command echo. The /
ARGUMENTS qualifier specifies arguments f a sol | a mi . The first GO command executes the initialization
code of echoar gs. exe after which the debugger suspends program execution at the temporary breakpoint at the
start of the program. The second GO command executes echoar gs. exe, which correctly echoes the arguments
to the screen.

$ DEBUG KEEP
Debugger Banner and Versi on Number

DBG> RUN COMMAND="echo"/ ARGUMENTS="fa sol la m"
YDEBUG- | - NOTATMAI N, Language: C, Mdul e: ECHOARGS
YDEBUG- | - NOTATMAI N, Type GO to reach main program
DBG> GO
break at routine ECHOARGS\ nain

1602: for (i = 0; i < argc; i++)
DBG> GO
_dsal:[jones.test] echoargs. exe; 2
fa
sol
la
m
YDEBUG- | - EXI TSTATUS, i s ' “SYSTEM S- NORVAL, Normal successful conpletion'

This section of the debugger session shows the use of the RERUN command with the/ ARGUMENTS qualifier to
run the same image again, with new argumentsf ee fii foo fum (If you omitthe/ARGUMENTS qualifier,
the debugger reruns the program with the arguments used previously.)

The first GO command executes the initialization code of echoar gs. exe after which the debugger suspends
program execution at the temporary breakpoint at the start of the program. The second GO command executes
echoar gs. exe, which correctly echoes the arguments to the screen.

DBG> RERUN ARGUMENTS="fee fii foo funt
Y%DEBUG- | - NOTATMAI N, Language: C, Mdul e: ECHOARGS
YDEBUG- | - NOTATMAI N, Type GO to reach main program
DBG GO
break at routine ECHOARGS\ main

1602: for (i = 0; i < argc; i++)

DBG> GO

_dsal:[jones.test] echoargs. exe; 2
fee

fii

foo

fum

YOEBUG | - EXI TSTATUS, i s ' %BYSTEM S- NORMAL, Normal successful conpl etion'

This section of the debugging session uses the RUN command to invoke a fresh image of echoar gs, with the
/ARGUMENTS qualifier to specify a new set of argumentsa b c.

VSI Confidential, NDA Required 13

Introduction to the Debugger

The first GO command executes the initialization code of echoar gs. exe after which the debugger suspends
program execution at the temporary breakpoint at the start of the program. The second GO command executes
echoar gs. exe,which correctly echoes the arguments to the screen.

DBG> RUN ARGUMENTS="a b c" echoargs
Y%DEBUG- | - NOTATMAI N, Language: C, Modul e: ECHOARGS
YDEBUG- | - NOTATMAI N, Type GO to reach mai n program
DBG> GO
break at routine ECHOARGS\ main
1602: for (i = 0; i < argc; i++)
DBG> GO
dsal:[jones.test]echoargs. exe; 2

O T |

YOEBUG | - EXI TSTATUS, i s ' BYSTEM S- NORMAL, Normal successful conpletion'
DBG> quit

RUN Command Restrictions

Note the following restrictions about the debugger RUN command:
* You can use the RUN command only if you started the debugger with the DCL command DEBUG /KEEP.

* You cannot use the RUN command to connect the debugger to a running program (see Section 1.7, “Starting
the Debugger After Interrupting a Running Program”).

» Unless you are using the debugger client/server interface, you cannot run a program under debugger control
over a network link. See Section 9.9, “Starting the Motif Debug Client” and Chapter 11, Using the Debugger
PC Client/Server Interface for more information about using the debugger client/server interface.

1.3.2. When Your Program Completes Execution

When your program completes execution normally during a debugging session, the debugger issues the following
message:

YOEBUG | - EXI TSTATUS, i s ' Y5YSTEM S- NORMAL, Normal successful conpletion')
You then have the following options:

* You can rerun your program from the same debugging session (see Section 1.3.3, “Rerunning the Same Program
from the Kept Debugger”).

* You can run another program from the same debugging session (see Section 1.3.4, “Running Another Program
from the Kept Debugger”).

* You can end the debugging session (see Section 1.8, “Ending a Debugging Session”).

1.3.3. Rerunning the Same Program from the Kept
Debugger

You can rerun the program currently under debugger control at any time during a debugging session, provided
you invoked the kept debugger as explained in Section 1.3.1, “Starting the Kept Debugger”. Use the RERUN
command. For example:

DBG> RERUN
YOEBUG- | - NOTATMAI N, Language: C, Modul e: ECHOARGS
YOEBUG- | - NOTATMAI N, Type GO to reach main program

14 VSI Confidential, NDA Required

Introduction to the Debugger

DBG>

The RERUN command terminates the image you were debugging and brings a fresh copy of that image under
debugger control, pausing at the start of the main source module as if you had used the RUN command (see
Section 1.3.1, “Starting the Kept Debugger”).

When you use the RERUN command you can save the current state (activated or deactivated) of any breakpoints,
trace points, and static watch points. Note that the state of a particular nonstatic watchpoint might not be saved,
depending on the scope of the variable being watched relative to the main program unit (where execution restarts).
RERUN /SAVE is the default. To clear all breakpoints tracepoints, and watchpoints, enter RERUN /NOSAVE.

The RERUN command invokes the same version of the image that is currently under debugger control. To debug
a different version of that program (or a different program) from the same debugging session, use the RUN
command. To rerun a program with new arguments, use the /ARGUMENTS qualifier (see the section called
“RUN and RERUN Command Options for Programs That Require Arguments”).

1.3.4. Running Another Program from the Kept
Debugger

You can bring another program under debugger control at any time during a debugging session, provided you
invoked the kept debugger as explained in Section 1.3.1, “Starting the Kept Debugger”. Use the debugger RUN
command. For example:

DBG> RUN TOTALS
YOEBUG | - NOTATMAI N, Language: FORTRAN, Mbodul e: TOTALS
DBG>

The debugger loads the program and pauses execution at the start of the main source module.
For more information about startup conditions and restrictions, see Section 1.3.1, “Starting the Kept Debugger”.

For information about all RUN command options, see the debugger RUN command description.

1.4. Interrupting Program Execution and
Aborting Debugger Commands

If your program goes into an infinite loop during a debugging session so that the debugger prompt does not
reappear, press Ctrl/C. This interrupts program execution and returns you to the debugger prompt (pressing Ctrl/C
does not end the debugging session). For example:

DBG> GO
#
arl/C
DBG>

You can also press Ctrl/C to abort the execution of a debugger command. This is useful if, for example, the
debugger is displaying along stream of data.

Pressing Ctrl/C when the program is not running or when the debugger is not performing an operation has no
effect.

If your program has a Ctrl/C AST (asynchronous system trap) service routine enabled, use the SET ABORT_KEY
command to assign the debugger's abort function to another Ctrl/key sequence. To identify the abort key that is
currently defined, enter the SHOW ABORT_KEY command.

Pressing Ctrl/Y from within a debugging session has the same effect as pressing Ctrl/Y during the execution of
a program. Control is returned to the DCL command interpreter ($ prompt).

VSI Confidential, NDA Required 15

Introduction to the Debugger

1.5. Pausing and Resuming a Debugging
Session

The debugger SPAWN and ATTACH commands enable you to interrupt a debugging session from the debugger
prompt, enter DCL commands, and return to the debugger prompt. These commands function essentially like the
DCL commands SPAWN and ATTACH:

+ Use the debugger SPAWN command to create a subprocess.
* Use the debugger ATTACH command to attach to an existing process or subprocess.

You can enter the SPAWN command with or without specifying a DCL command a sa parameter. If you specify
a DCL command, it is executed in a subprocess (if the DCL command invokes a utility, that utility is invoked in a
subprocess). Control returns to the debugging session when the DCL command terminates (or when you exit the
utility). The following example shows spawning the DCL command DIRECTORY:

DBG> SPAWN DI R [JONES. PRQJIECT2] *. FOR
#

Control returned to process JONES 1
DBG>

The next example shows spawning the DCL command MAIL, which invokes the Mail utility:

DBG> SPAVWN MAI L
VAl L> READ/ NEW

#

MAIL> EXIT

Control returned to process JONES 1
DBG>

If you enter the SPAWN command without specifying a parameter, a subprocess is created, and you can then enter
DCL commands. Either logging out of the subprocess or attaching to the parent process (with the DCL command
ATTACH) returns you to the debugging session. For example:

DBG> SPAWN
$ RUN PRO®
#

$ ATTACH JONES 1
Control returned to process JONES 1
DBG>

If you plan to go back and forth several times between your debugging session and a spawned subprocess (which
might be another debugging session), use the debugger ATTACH command to attach to that subprocess. Use the
DCL command ATTACH to return to the parent process. Because you do not create a new subprocess every time
you leave the debugger, you use system resources more efficiently.

If you are running two debugging sessions simultaneously, you can define anew debugger prompt for one of the
sessions with the SET PROMPT command. This helps you differentiate the sessions.

1.6. Starting the Debugger by Running a
Program

You can bring your program under control of the non-kept debugger in one step by entering the DCL command
RUNfIi | espec.

Note that when running the non-kept debugger, you cannot use the debugger RERUN or RUN features explained
in Section 1.3.3, “Rerunning the Same Program from the Kept Debugger” and Section 1.3.4, “Running Another

16 VSI Confidential, NDA Required

Introduction to the Debugger

Program from the Kept Debugger”, respectively. To rerun the same program or run another program under
debugger control, you must first exit the debugger and start it again.

To start the non-kept debugger by running a program:

1. Verify that you have compiled and linked the program as explained in 1.2.1 and 1.2.2.
2. Enter the DCL command RUN f i | espec to start the debugger.

For example:

$ RUN FORMS

Debugger Banner and Versi on Number
YDEBUG- | - NOTATMAI N, Language: C, Mdul e: FORMS
DBG>

Upon startup, the debugger displays its banner, executes any user-defined initialization file, sets the language-
dependent parameters to the source language of the main program, suspends execution at the start of the main
program,and prompts for commands.

For more information about startup conditions, see Section 1.2.3, “Controlling Debugger Activation with the LINK
and RUN Commands” and Section 1.3.1, “Starting the Kept Debugger”.

1.7. Starting the Debugger After Interrupting a
Running Program

You can bring a program that is executing freely under debugger control. This is useful either if you suspect that
the program might be in an infinite loop or if you see erroneous output.

To bring your program under debugger control:

1. Verify that you have compiled and linked the program as explained in Section 1.2, “Preparing an Executable
Image for Debugging”.

2. Enter the DCL command RUN/NODEBUG fi | espec to execute the program without invoking the
debugger.

3. Press Ctrl/Y to interrupt the executing program. Control passes to the DCL command interpreter.
4. Enter the DCL command DEBUG. This invokes the non-kept debugger.
For example:

$ RUN NODEBUG FORNMS
#
crl/y
I nterrupt
$ DEBUG
Debugger Banner and Versi on Number
YDEBUG- | - NOTATMAI N, Language: C, Mdul e: FORMS
DBG>

Upon startup, the debugger displays its banner, executes any user-defined initialization file, sets the language-
dependent parameters to the source language of the module where execution is interrupted, and prompts for
commands.

To know where the execution is interrupted, enter the SHOW CALLS command to determine where execution is
paused and to display the sequence of routine calls on the call stack (the SHOW CALLS command is described
in Section 2.3.3, “Determining Where Execution Is Paused”).

VSI Confidential, NDA Required 17

Introduction to the Debugger

Note that when running the non-kept debugger, you cannot use the debugger RERUN or RUN features explained
in Section 1.3.3, “Rerunning the Same Program from the Kept Debugger” and Section 1.3.4, “Running Another
Program from the Kept Debugger”, respectively. To rerun the same program or run another program under
debugger control, you must first exit the debugger and start it again.

For more information about startup conditions, see Section 1.2.3, “Controlling Debugger Activation with the LINK
and RUN Commands” and Section 1.3.1, “Starting the Kept Debugger”.

1.8. Ending a Debugging Session

To end a debugging session in an orderly manner and return to DCL level,enter EXIT or QUIT or press Ctrl/Z.
For example:

DBG EXIT
$

The QUIT command starts the debugger exit handlers to close log files, restores the screen and keypad states,
and so on.

The EXIT command and Ctrl/Z function identically. They perform the same functions as the QUIT command,and
additionally execute any exit handlers that are declared in your program.

1.9. Debugging a Program on a Workstation
Running DECwindows Motif

If you are at a workstation running HP DECwindows Motif for OpenVMS, by default the debugger starts up in
the HP DECwindows Motif for OpenVMS user interface, which is displayed on the workstation specified by the
HP DECwindows Motif for OpenVMS application wide logical name DECWSDI SPLAY.

The logical name DBGSDECWSDI SPLAY enables you to override the default to display the debugger's command
interface in a DECterm window, along with any program input/output (I/O).

To display the debugger's command interface in a DECterm window:
1. Enter the following definition in the DECterm window from which you plan to start the debugger:

$ DEFI NE/ JOB DBGSDECWSDI SPLAY " "

You can specify one or more space characters between the quotation marks. You should use a job definition for
the logical name. If you use a process definition, it must not have the CONFINE attribute.

2. Start the debugger in the usual way from that DECterm window (see Section 1.3.1, “Starting the Kept
Debugger”).The debugger's command interface is displayed in the same window.

For example:

$ DEFI NE/ JOB DBGSDECWSDI SPLAY " "
$ DEBUG KEEP

Debugger Banner and Versi on Nunmber
DBG>

You can now bring your program under debugger control as explained in Section 1.3.1, “Starting the Kept
Debugger”.For more information about the logical names DBGSDECWEDI SPLAY and DECWEDI SPLAY, see
Section 9.8.3, “Overriding the Debugger's Default Interface”.

On a workstation running HP DECwindows Motif for OpenVMS, you can also run the client/server configuration
of the OpenVMS debugger. See Section 9.9, “Starting the Motif Debug Client” for details.

18 VSI Confidential, NDA Required

Introduction to the Debugger

1.10. Debugging a Program from a PC
Running the Debug Client

The OpenVMS Debugger Version 7.2 and later features a client/server interface that allows you to debug programs
running on OpenVMS on Alpha from a PC debug client interface running:

* Microsoft Windows (Intel)

* Microsoft Windows NT Version 3.51 or greater (Intel or Alpha)

Note

The client/server interface for OpenVMS Integrity server systems is planned for a future release.

The OpenVMS client/server configuration allows the following:

* Remote access to OpenVMS Debug servers from other OpenVMS systems or from PCs running Windows 95
or Windows NT Version 3.51 or later

* Client access to multiple servers, each running on the same or different OpenVMS nodes
« Multiple clients on different nodes to simultaneously connect to the same server for teaching or team debugging
» Debugging of multitier client/server applications that are distributed among several mixed-platform systems

The client and server communicate using Distributed Computing Environment/Remote Procedure Calls (DCE/
RPC)over one of the following transports:

« TCP/IP

- UDP

* DECnet

To invoke the server on an OpenVMS node, enter the following command:
$ DEBUG SERVER

The server displays its network binding strings. You must specify one of these strings when you connect a HP
DECwindows Motif for OpenVMS or Microsoft Windows client to this server. For example:

$ DEBUG SERVER

YDEBUG- | - SPEAK: TCP/ | P: YES, DECnet: YES, UDP: YES

%DEBUG- | - WATCH: Net wor k Bi ndi ng: ncacn_i p_tcp: 16. 32. 16. 138[1034]
YOEBUG- | - WATCH: Networ k Bi ndi ng: ncacn_dnet _nsp: 19. 10[RPC224002690001]
%DEBUG- | - WATCH: Net wor k Bi ndi ng: ncadg_i p_udp: 16. 32. 16. 138[1045]
YDEBUG- | - AWAI T: Ready for client connection...

In the client's Server Connection dialog box, enter the type of network protocol (TCP/IP, DECnet, or UDP) and
the corresponding network binding string (see Section 9.9.4, “Starting the Motif Client”).

Note

Messages and program output appear by default in the window in which you start the server. You can redirect
program output to another window as required.

For more information about using the debug client interface,see Chapter 11, Using the Debugger PC Client/Server
Interface.

VSI Confidential, NDA Required 19

Introduction to the Debugger

1.11. Debugging Detached Processes That
Run with No CLI

The design and implementation of the debugger's HP DECwindows Motif for OpenVMS user interface requires
that the process being debugged have a command line interpreter (CLI). To debug a detached process (such as a
print symbiont) that does not have a CLI, you must use the character-cell (screen mode) interface to the debugger.

To do so, direct DBGSI NPUT, DBGSOUTPUT and DBGSERROR to a terminal port that is not logged in. This allows
the image to be debugged with the standard character-cell interface on that terminal.

For example:

$ DEFI NE/ TABLE=GROUP DBGS$I NPUT TTA3:

$ DEFI NE/ TABLE=GROUP DBGSOUTPUT TTA3:

$ DEFI NE/ TABLE=GROUP DBGSERROR TTA3:

$ START/ QUEUE SYS$PRI NT / PROCESSOR=dev: [dir]test_program
[Debugger starts up on | ogged-out term nal TTA3:]

1.12. Configuring Process Quotas for the
Debugger

Each user needs a PRCLM quota sufficient to create an additional subprocess for the debugger, beyond the number
of processes needed by the program.

BYTLM, ENQLM, FILLM, and PGFLQUOTA are pooled quotas. You may need to increase these quotas to
account for the debugger subprocess as follows:

* You should increase each user's ENQLM quota by at least the number of processes being debugged.

* You might need to increase each user's PGFLQUOTA. If a user has an insufficient PGFLQUOTA, the debugger
may fail to activate or may cause "virtual memory exceeded" errors during execution.

* You might need to increase each user's BYTLM and FILLM quotas. The debugger requires sufficient BY TLM
and FILLM quotas to open each image file being debugged, the corresponding source files, and the debugger
input, output, and log files. To increase these quotas,you can run SYS$SYSTEM:AUTHORIZE.EXE to adjust
parameters in SYSUAF. DAT.

1.13. Debugger Command Summary

The following sections list all the debugger commands and any related DCL commands in functional groupings,
along with brief descriptions. During a debugging session, you can get online help on all debugger commands
and their qualifiers by typing HELP at the debugger prompt (see Section 2.1, “Entering Debugger Commands
and Accessing Online Help”).

1.13.1. Starting and Ending a Debugging Session

The following commands start the debugger, bring a program under debugger control, and interrupt and end a
debugging session. Except where the DCL commands RUN and DEBUG are indicated specifically,all commands
are debugger commands.

$ DEBUG KEEP (DCL) Starts the kept debugger.
$ RUN SYS (DCL) Starts the kept debugger.
$SHARE: DEBUGSHR. EXE

$ DEBUG SERVER (DCL) Starts the debug server.

20 VSI Confidential, NDA Required

Introduction to the Debugger

$ DEBUG CLI ENT

(DCL) Starts the debug client.

$ RUN SYS
$SHARE: DEBUGUI SHR. EXE

(DCL) Starts the debug client.

RUN fil espec

Brings a program under debugger control.

RERUN

Reruns the program currently under debugger control.

$ RUN programi mage

(DCL) If the specified image was linked using LINK /DEBUG, starts the
debugger and also brings the image under debugger control. When you
start the debugger in this manner, you cannot then use the debugger RUN
or RERUN commands. You can use the /[NO]DEBUG qualifiers with
the RUN command to control whether the debugger is started when the
program is executed.

EXIT Ends a debugging session, executing all exit handlers.

CtrVZ

QU T Ends a debugging session without executing any exit handlers declared in
the program.

Ctrl/C Aborts program execution or a debugger command without interrupting

the debugging session.

(SET, SHOW ABORT KEY

(Assigns, identifies) the default Ctrl/C abort function to another Ctrl/key
sequence, identifies the Ctrl/key sequence currently defined for the
abort function.

Ctrl’Y (DCL) Interrupts a program that is running without debugger control and
starts the debugger.

$ DEBUG

ATTACH Passes control of your terminal from the current process to another
process.

SPAWN Creates a subprocess, which enables you to execute DCL commands

without ending a debugging session or losing your debugging context.

1.13.2. Controlling and Monitoring Program Execution

The following commands control and monitor program execution:

&0

Starts or resumes program execution

STEP

Executes the program up to the next line, instruction, or specified
instruction

(SET, SHOW STEP

(Establishes, displays) the default qualifiers for the STEP command

(SET, SHOW CANCEL) BREAK

(Sets, displays, cancels) breakpoints

(ACTI VATE, DEACTI VATE)
BREAK

(Activates, deactivates) previously set breakpoints

(SET, SHOW CANCEL) TRACE

(Sets, displays, cancels) tracepoints

(ACTI VATE, DEACTI VATE)
TRACE

(Activates, deactivates) previously set tracepoints

(SET, SHON CANCEL) WATCH

(Sets, displays, cancels) watchpoints

(ACTI VATE, DEACTI VATE)
WATCH

(Activates, deactivates) previously set watchpoints

SHOW CALLS Identifies the currently active routine calls
SHOW STACK Gives additional information about the currently active routine calls
CALL Calls a routine

VSI Confidential, NDA Required 21

Introduction to the Debugger

1.13.3. Examining and Manipulating Data

The following commands examine and manipulate data:

EXAM NE

Displays the value of a variable or the contents of a program location

SET MODE [NO| OPERANDS

Controls whether the address and contents of the instruction operands are
displayed when you examine an instruction

DEPCSI T Changes the value of a variable or the contents of a program location

DUMP Displays the contents of memory in a manner similar to the DCL
command DUMP

EVALUATE Evaluates a language or address expression

MONI TOR (Applies only to the debugger's HP DECwindows Motif for OpenVMS

user interface) Displays the current value of a variable or language
expression in the monitor view of the HP DECwindows Motif for
OpenVMS user interface

1.13.4. Controlling Type Selection and Radix

The following commands control type selection and radix:

(SET, SHOW CANCEL) RADI X

(Establishes, displays, restores) the radix for data entry and display

(SET, SHON CANCEL) TYPE

(Establishes, displays, restores) the type for program locations that are not
associated with a compiler-generated type

SET MODE [NO| G_FLOAT

Controls whether double-precision floating-point constants are interpreted
as G_FLOAT or D_FLOAT

1.13.5. Controlling Symbol Searches and

Symbolization

The following commands control symbol searches and symbolization:

SHOW SYMBCOL

Displays symbols in your program

(SET, SHOW CANCEL) MODULE

Sets a module by loading its symbol information into the debugger's
symbol table, identifies, cancels a set module

(SET, SHOW CANCEL) | MAGE

Sets a shareable image by loading data structures into the debugger's
symbol table, identifies, cancels a set image

SET MODE [NO| DYNAM C

Controls whether or not modules and shareable images are set
automatically when the debugger interrupts execution

(SET, SHOW CANCEL) SCOPE

(Establishes, displays, restores) the scope for symbol searches

SYMBQOLI ZE

Converts a memory address to a symbolic address expression

SET MODE [NQ| LI NE

Controls whether or not program locations are displayed in terms of line
numbers or r out i ne- name + byt e of f set

SET MODE [NO| SYMBOLI C

Controls whether or not program locations are displayed symbolically or
in terms of numeric addresses

1.13.6. Displaying

Source Code

The following commands control the display of source code:

‘TYPE

‘Displays lines of source code

22

VSI Confidential, NDA Required

Introduction to the Debugger

EXAM NE/ SOURCE

Displays the source code at the location specified by the address
expression

SEARCH

Searches the source code for the specified string

(SET, SHOW SEARCH

(Establishes, displays) the default qualifiers for the SEARCH command

SET STEP [NO| SOURCE

Enables/disables the display of source code after a STEP command has
been executed or at a breakpoint, tracepoint, or watchpoint

(SET, SHON MARG NS

(Establishes, displays) the left and right margin settings for displaying
source code

(SET, SHOW CANCEL) SOURCE

(Creates, displays, cancels) a source directory search list

1.13.7. Using Screen Mode

The following commands control screen mode and screen displays:

SET MODE [NO| SCREEN

Enables/disables screen mode

DI SPLAY

Creates or modifies a display

SCROLL Scrolls a display
EXPAND Expands or contracts a display
MOVE Moves a display across the screen

(SHOW CANCEL) DI SPLAY

(Identifies, deletes) a display

(SET, SHOW CANCEL) W NDOW

(Creates, identifies, deletes) a window definition

SELECT

Selects a display for a display attribute

SHOW SELECT Identifies the displays selected for each of the display attributes
SAVE Saves the current contents of a display into another display
EXTRACT Saves a display or the current screen state into a file

(SET, SHOW TERM NAL

(Establishes, displays) the terminal screen height and width that the
debugger uses when it formats displays and other output

SET MODE [NO| SCROLL

Controls whether an output display is updated line by line or once per
command

Ctrl/'%WW

DI SPLAY/ REFRESH

Refreshes the screen

1.13.8. Editing Source Code

The following commands control source editing from a debugging session:

EDIT

Starts an editor during a debugging session

(SET, SHOW EDI TOR

(Establishes, identifies) the editor started by the EDIT command

1.13.9. Defining Symbols

The following commands define and delete symbols for addresses, commands, or values:

DEFI NE

Defines a symbol as an address, command, or value

DELETE

Deletes symbol definitions

(SET, SHOW DEFI NE

(Establishes, displays) the default qualifier for the DEFINE command

SHOW SYMBOL/ DEFI NED

Identifies symbols that have been defined with the DEFINE command

VSI Confidential, NDA Required

Introduction to the Debugger

1.13.10. Using Keypad Mode

The following commands control keypad mode and key definitions:

SET MODE [NO| KEYPAD

Enables/disables keypad mode

DEFI NE/ KEY Creates key definitions

DELETE/ KEY Deletes key definitions

SET KEY Establishes the key definition state
SHOW KEY Displays key definitions

1.13.11. Using Command Procedures, Log Files, and

Initialization Files

The following commands are used with command procedures and log files:

@ (execut e procedure)

Executes a command procedure

(SET, SHOW ATSI GN

(Establishes, displays) the default file specification that the debugger uses
to search for command procedures

DECLARE

Defines parameters to be passed to command procedures

(SET, SHOW LOG

(Specifies, identifies) the debugger log file

SET OUTPUT [NO| LOG

Controls whether or not a debugging session is logged

SET OUTPUT
[NO| SCREEN_LOG

Controls whether or not, in screen mode, the screen contents are logged
as the screen is updated

SET OUTPUT [N VERI FY

Controls whether or not debugger commands are displayed as a command
procedure is executed

SHOW OQUTPUT

Identifies the current output options established by the SET OUTPUT
command

1.13.12. Using Control Structures

The following commands establish conditional and looping structures for debugger commands:

FOR Executes a list of commands while incrementing a variable
I F Executes a list of commands conditionally

REPEAT Executes a list of commands a specified number of times
VWHI LE Executes a list of commands while a condition is true

EXI TLOOP Exits an enclosing WHILE, REPEAT, or FOR loop

1.13.13. Debugging Multiprocess Programs

The following commands debug multiprocess programs. Note that these commands are specific to multiprocess
programs. Many of the commands listed under other categories have qualifiers or parameters that are specific
to multiprocess programs (for example, SET BREAK/ACTIVATING, EXIT pr ocess- spec, DISPLAY /
PROCESS=).

CONNECT
DEFI NE/ PROCESS_SET
SET MODE [NO| | NTERRUPT

Brings a process under debugger control

Assigns a symbolic name to a list of process specifications

Controls whether execution is interrupted in other processes when it is
paused in some process

24 VSI Confidential, NDA Required

Introduction to the Debugger

(SET, SHOW PROCESS

Modifies the multiprocess debugging environment, displays process
information

VWAI'T

When debugging a multiprocess program, controls whether the debugger
waits until all processes have stopped before prompting for another
command

1.13.14. Additional Commands

The following commands are used for miscellaneous purposes:

HELP

Displays online help on debugger commands and selected topics

ANALYZE/ CRASH_DUMP

Opens a process dump for analysis with the System Dump Debugger
(SDD)

ANALYZE/ PROCESS_DUMP

Opens a process dump for analysis with the System Code Debugger
(SCD)

(DI SABLE, ENABLE, SHOW
AST

(Disables, enables) the delivery of ASTs in the program, identifies
whether delivery is enabled or disabled

PTHREAD

Passes a command to the POSIX Threads Debugger

(SET, SHOW
EVENT_FACI LI TY

(Establishes, identifies) the current run-time facility for Ada, POSIX
Threads, and SCAN events

(SET, SHOW LANGUAGE

(Establishes, identifies) the current language

SET OUTPUT [NO| TERM NAL

Controls whether debugger output, except for diagnostic messages, is
displayed or suppressed

SET PROVPT

Specifies the debugger prompt

(SET, SHOW TASK | THREAD

Modifies the tasking environment, displays task information

SHOW EXI T_HANDLERS

Identifies the exit handlers declared in the program

SHOW MODE

Identifies the current debugger modes established by the SET MODE
command (for example, screen mode, step mode)

SHOW OQUTPUT

Identifies the current output options established by the SET OUTPUT
command

VSI Confidential, NDA Required 25

Introduction to the Debugger

26

VSI Confidential, NDA Required

Part ll. Command Interface

VSI Confidential, NDA Required

27

28

VSI Confidential, NDA Required

Command Interface

Table of Contents

Chapter 2. Getting Started with the Debuggercivvviiivvrrissricssnrccssnnccssnncsssnncscnnes 33

2.1. Entering Debugger Commands and Accessing Online Helpo.cooiiiiii . 33
2.2. Displaying SoUICE COAEcuuiiniiiiii it 35
2.2.1. NOSCTEEN MOME ...ttt et et ea e 35
2.2.2. SCTEEN MOME ...ttt 35

2.3. Controlling and Monitoring Program EXecutioncoooiiiiiiiiiiiiniiiiiiiie e 36
2.3.1. Starting or Resuming Program EXecutionc.coiiiiiiiiiiiniiiiiiiiiii e 36
2.3.2. Executing the Program by Step Unitcoiiiiiiiiiiiiiiiiiii e, 37
2.3.3. Determining Where Execution Is Pausedcooiiiiiiiiiiiiii e 38
2.3.4. Suspending Program Execution with Breakpointsccoooiiiiiiiiiiiniiniii, 38
2.3.5. Tracing Program Execution with Tracepointscooeeiiiiiiiiiiiiineineeeeceeenn 40
2.3.6. Monitoring Changes in Variables with Watchpointsc..ccoiiiiiiiiiiiiiiiine, 40

2.4. Examining and Manipulating Program Datacoooiiiiiiiiiiiii 41
2.4.1. Displaying the Value of a Variablecooiiiiiiiiiiii e 41
2.4.2. Assigning a Value to a Variableooooiiiiiiiiiiiii e 42
2.4.3. Evaluating Language EXPreSSIONnSc..viuuiiiieiiiiieii it 43

2.5. Controlling Access to Symbols in Your Programcoooiiiiiiiiiiiniiiiii e 44
2.5.1. Setting and Canceling ModULIESoouuiiiiiiiiiie e 44
2.5.2. Resolving Symbol AmMbBIUILIESocuuiiniiiiiei e 44

2.6. Sample Debugging SESSIONiuuiiuueiie ittt et 45
Chapter 3. Controlling and Monitoring Program Executionceceveecrecsseecsenccneess 49
3.1. Commands Used to Execute the Program ..ot 49
3.2. Executing the Program by Step Unitcoooiiiiiiiii e 50
3.2.1. Changing the STEP Command Behaviorcooiiiiiiiiiiiiiii e 50
3.2.2. Stepping Into and Over ROULINESc.iiuiiiiiiiiiii e 51

3.3. Suspending and Tracing Execution with Breakpoints and Tracepointsccceeeuviiniiennennnen. 52
3.3.1. Setting Breakpoints or Tracepoints on Individual Program Locations 53
3.3.2. Setting Breakpoints or Tracepoints on Lines or Instructionsc..ccoeeeviiiiineienn. 55
3.3.3. Setting Breakpoints on Emulated Instructions (Alpha Only)coocoviiiiiiiiiiininn. 56
3.3.4. Controlling Debugger Action at Breakpoints or Tracepointsc..ccoveeuviiiiineinnennnn. 56
3.3.5. Setting Breakpoints or Tracepoints on EXceptionsccoeeeuieiiiiiiiiiiiiiiiinineieen, 57
3.3.6. Setting Breakpoints or Tracepoints on EVentsccoooiiiiiiiiiiiiiiiiiiiineeee 57
3.3.7. Deactivating, Activating, and Canceling Breakpoints or Tracepointsc....c..cee... 58

3.4. Monitoring Changes in Variables and Other Program Locationsccoooviiiiiiiniinin.. 58
3.4.1. Deactivating, Activating, and Canceling Watchpointsccoooiiiiiiiiiiiiiiniin e, 60
3.4.2. Watchpoint OPLIONSueiuniieeiie ittt et e e e e e eenees 60
3.4.3. Watching Nonstatic Variablescovouuiiiiiiiiiie e 61
Chapter 4. Examining and Manipulating Program Data 65
4.1, GENETAL CONCEPLS ...eeevineiiineiii ettt ettt et ettt ettt et et et et et e e et e eaineeaaneae 65
4.1.1. Accessing Variables While Debuggingc.ccooiiiiiiiiiiiiiiiiniiiiniiieci e 65
4.1.2. Using the EXAMINE Commandc.cccouuiiiiiiiiiiiiiieiineineii e 66
4.1.3. Using the DUMP Commandcc..uveiuuiiiuiiiiiineiii et eeei e eenaes 66
4.1.4. Using the DEPOSIT Commandccootiiiiiiiiiiiiiiniiiieiii e 67
4.1.5. Address Expressions and Their Associated TYPEsc..uveevureiiiniiiiniiiiiiiiiiniiiineiiieeannn. 68
4.1.6. Evaluating Language EXPreSSiOnscc.uviiiiiiiiiiiiiiniiineiiieiiieeii e eeeie e 69
4.1.7. Address Expressions Compared to Language EXpressionsccevveeunvieineiinneennnne. 71
4.1.8. Specifying the Current, Previous, and Next Entityccooeiviiiiiiiiiiiiniinin, 72
4.1.9. Language Dependencies and the Current Languagecccoveiieiiiiiiiiiiiiineeeenn. 74
4.1.10. Specifying a Radix for Entering or Displaying Integer Datac..coooiiin . 74
4.1.11. Obtaining and Symbolizing Memory Addressesc.oveueeiieiiniiiiiiieiiieiieeeeennnen. 76

4.2. Examining and Depositing into Variablesoooiiiiiiiiiiiiiii e 77
N BN 1o 1 3 G) o T PP 78
4.2.2. ASCIIL SHINE TYPES +eneenetnneineii ettt et e e e e et e e e e eanns 79

VSI Confidential, NDA Required 29

Command Interface

423, ATTAY Y PS ettt ettt 79
N B o) (¢ B 731 81
4.2.5. POINLET (ACCESS) TYPES wunerniineiineiie it et et et et e e e e e et et et e e e e e e e eanaeans 81

4.3. Examining and Depositing INStrUCLIONSoieiuniiiiiiiiiiiiiii e 82
4.3.1. Examining INSrUCHIONSovuuiieiiieiiieiie et e e e e et et e e e e e e e e eeeeeeeens 82

4.4. Examining and Depositing into REGISTETSevuuiiiiiiiieiieiie e e e 84
4.4.1. Examining and Depositing into Alpha RegIStersoeeeuiviiiiiiiiiniiiiniiiiiineciees 84
4.4.2. Examining and Depositing into Integrity server Registersc.c.ccivviiniiiiiiiinennnn.. 85

4.5. Specifying a Type When Examining and Depositingcc.veieunieiuiniiineiiineeiineiiineciieennne. 89
4.5.1. Defining a Type for Locations Without a Symbolic Namecccoceeviviiiiiiiiineiinennnn.. 90
4.5.2. Overriding the Current TYPEcoouniiiiiiiiiiii e 90
Chapter 5. Controlling Access to Symbols in Your Programeeeiveeisneccnecnnnn. 95
5.1. Controlling Symbol Information When Compiling and Linkingccooeiiiiiiiiniiinninne, 96
511 COMPIING ..evnneiiii ettt 96
5.1.2. Local and Global Symbolscc.uiiiiiiiiiiiiiiiiiii e 97
5130 LINKING ceeiniiiieiii et et aas 97
5.1.4. Controlling Symbol Information in Debugged Imagesccoccovviiiiiiiiiiiiiniiiieineannns 98
5.1.5. Creating Separate Symbol Files (Alpha Only)ccoooiiiiiniiiniiiii e, 99

5.2. Setting and Canceling MoOdUIEScouuiiiiiiiiiii e 99
5.3. Resolving Symbol AMDBIGUITIESuvunieneiieiieii et et et et e e e e et e e e e e et e e eaneeaneeaneeenns 100
5.3.1. Symbol LooKup CONVENTIONSciuuuiiiniiiieiiieeiie ittt ettt et e et e e e e 101
5.3.2. Using SHOW SYMBOL and Path Names to Specify Symbols Uniquely 102
5.3.3. Using SET SCOPE to Specify a Symbol Search Scopeccovvvviiiiiiniiiniiniiniinnn. 104

5.4. Debugging Shareable IMagesoiuniiiiiiiietie e e e e e eans 104
5.4.1. Compiling and Linking Shareable Images for Debuggingcccoovvviiiiiiiniinnnnnn.n. 105
5.4.2. Accessing Symbols in Shareable Imagescoveiuieiiiiiiiiiiiie e, 106
5.4.3. Debugging Resident Images (Alpha Only)cooviiiiiiiiiiiiiii e 108
Chapter 6. Controlling the Display of Source Codecouerevueiseiisnrcsersseensnecsseecnens 111
6.1. How the Debugger Obtains Source Code Informationc.coceuviiiiiiiiiiiiiniiiiniiiinecns 111
6.2. Specifying the Location of Source Filesccc.oviiiiiiiiiiiiiiiii e 111
6.3. Displaying Source Code by Specifying Line NUMDbErscccoeeuuiiiiniiiiiiiiiniiiniiineeiieee, 112
6.4. Displaying Source Code by Specifying Code Address EXpressionsccoveuvvveneiineieneeennnnn. 113
6.5. Displaying Source Code by Searching for Stringscccoeeeuieiiiiiiiiniiiiiniininci e, 115
6.6. Controlling Source Display After Stepping and at Event pointsccoeveviineiieiniinnennnen. 116
6.7. Setting Margins for Source DiSPlayviuiiiiiiiiiiiieie e 117
Chapter 7. Screen Mode 119
7.1. Concepts and TerminOIOZYc..veeuuniiiiniiiiie ittt et 119
7.2, DISPlay KINAS ...cevnniiiiiiii e 121
7.2.1. DO (Command[; ...]) Display Kindcoiiiiiiiiiiiiiiiiiiecec e 121
7.2.2. INSTRUCTION Display Kindcoeeeumiieiiiiiieiiiieeeis e 122
7.2.3. INSTRUCTION (Command) Display Kindcccooiiiiiiiiiniiiniiieeeen, 122
7.2.4. OUTPUT Display Kindcoouiiiiiiiiiiii e 123
7.2.5. REGISTER Display Kindc..ocouuiiiiiiiiiii e 123
7.2.6. SOURCE Display Kindcoouiiiiiiiiiiiiii e 124
7.2.7. SOURCE (Command) Display Kindcoiuuiiiiiiiiiiiineieie e 125
7.2.8. PROGRAM Display Kindc..oiiiiiiiiiiiiiiiii e 125

7.3, DISPlay ALIDULES ...ceeuueiineiii ittt ettt ettt e 125
7.4. Predefined DISPIAYSieuiiiniii et eas 127
7.4.1. Predefined Source Display (SRC)oieiiiiiiiiiiiii e 129
7.4.2. Predefined Output Display (OUT)c..oiiiiiiiiiiiiiiiies e 130
7.4.3. Predefined Prompt Display (PROMPT) ...cc..iiiiiiiiiiiiiiiiiiic e, 131
7.4.4. Predefined Instruction Display (INST)ccouiiiiiiiiiiiiiiii e 131

7.5. Manipulating EXisting DiSPIaysoiuuiiiniiineiieiiee ettt 133
7.5.1. Scrolling @ DISPIAYuieniineiie ettt 133
7.5.2. Showing, Hiding, Removing, and Canceling a Displayccccoevveiiniiniiniinnnnnnen. 134
7.5.3. Moving a Display Across the SCreencevuuiiiniiiieiiieiiieiie e 135

30 VSI Confidential, NDA Required

Command Interface

7.5.4. Expanding or Contracting a Displayc.oviiiiiiiiiiiiiiiieee e 135
7.6. Creating @ New DISPIAYccuuniiiiiiiiiii e 135
7.7. Specifying a Display WINAOWoooniiiniiiiiii et eaes 136
7.7.1. Specifying a Window in Terms of Lines and Columnsccoeeviinviiiiiniiineiinnennn. 136
7.7.2. Using a Predefined WIndOWccooiiiiiiiiiiiiiiiii et 136
7.7.3. Creating a New Window Definitionc.oviuiiiiiiiiieiniiieiei e 136
7.8. Sample Display COnfigUuIationccuviiuiiieii it e et e et e e e e e e e e eanaannas 137
7.9. Saving Displays and the Screen Stateoeiuiiiiiiiriiiieiiiee e 137
7.10. Changing the Screen Height and Width ...t 138
7.11. Screen-Related Built-In Symbolsc..ooiiiiiiiiiiiiii e 138
7.11.1. Screen Height and Widthooiiiiiiiii e 138
7.11.2. Display Built-In SYMDOLSc.uiieiiiiiiii et 139
7.12. Screen Dimensions and Predefined WIndoOwsoociiiiiiiiiiiiiiiiniiiiiin e, 139
7.13. Internationalization of Screen MoOdeovuniiiiiiiiiii e 141

VSI Confidential, NDA Required 31

Command Interface

32

VSI Confidential, NDA Required

Getting Started with the Debugger

Chapter 2. Getting Started with the
Debugger

This chapter gives a tutorial introduction to the debugger's command interface.

The way you use the debugger depends on several factors: the kind of program you are working on, the kinds of
errors you are looking for, and your own personal style and experience with the debugger. This chapter explains
the following basic tasks that apply to most situations:

* Entering debugger commands and getting online help
* Viewing your source code with the TYPE command and in screen mode

* Controlling program execution with the GO, STEP, and SET BREAK commands, and monitoring execution
with the SHOW CALLS, SET TRACE, and SET WATCH commands

* Examining and manipulating data with the EXAMINE, DEPOSIT, and EVALUATE commands
* Controlling symbol references with path names and the SET MODULE and SET SCOPE commands

Several examples are language specific. However, the general concepts are readily adaptable to all supported
languages.

The sample debugging session in Section 2.6, “Sample Debugging Session” shows how to use some of this
information to locate an error and correct it.

For information about starting and ending a debugging session, see Section 1.3, “Debugging a Program with the
Kept Debugger”.

2.1. Entering Debugger Commands and
Accessing Online Help

After you start the debugger as explained in Section 1.3, “Debugging a Program with the Kept Debugger”, you
can enter debugger commands whenever the debugger prompt (DBG>) is displayed. To enter a command, type it at
the keyboard and press Return. For example, the following command sets a watchpoint on the variable COUNT:

DBG> SET WATCH COUNT

Detailed reference information about debugger commands is available in Chapter 11, Using the Debugger PC
Client/Server Interface and through the debugger's online help:

* To list the help topics, type HELP at the prompt.
* For an explanation of the help system, type HELP.
» For complete rules on entering commands, type HELP Conmand_For nmat .

* To display help on a particular command, type HELP conmand.For example, to display HELP on the SET
WATCH command, type HELP SET WATCH.

* To list commands grouped by function, type HELP Command_For mat .
Online help is also available on the following topics:

New_Features
Release Notes
Address_Expressions
Built_in_Symbols

VSI Confidential, NDA Required 33

Getting Started with the Debugger

DECwindows_Interface

Keypad Definitions

Language Support

Logical Names

Messages (diagnostic messages)

Path Names (to qualify symbolic names)

Screen_Mode

SS$ DEBUG condition (to start debugger from program)
System Management

To display help about any of these topics, type HELP t opi c. For example, to display information about diagnostic
messages, type HELP Messages.

When you start the debugger, a few commonly used command sequences are automatically assigned to the keys on
the numeric keypad (to the right of the main keyboard). Thus, you can perform certain functions either by entering
a command or by pressing a keypad key.

The predefined key functions are identified in Figure 2.1, “Keypad Key Functions Predefined by the Debugger---
Command Interface”.

Figure 2.1. Keypad Key Functions Predefined by the Debugger---Command Interface

Placeholder
for images

Most keypad keys have three predefined functions - DEFAULT, GOLD, and BLUE.

* To enter a key's DEFAULT function, press the key.

* To enter its GOLD function, first press and release the PF1 (GOLD) key, and then press the key.
» To enter its BLUE function, first press and release the PF4 (BLUE) key, and then press the key.

In Figure 2.1, “Keypad Key Functions Predefined by the Debugger---Command Interface”, the DEFAULT, GOLD,
and BLUE functions are listed within each key's outline, from top to bottom, respectively. For example:

* Pressing KPO (keypad key 0) enters the STEP command.
» Pressing PF1 KPO enters the STEP /INTO command.
* Pressing PF4 KPO enters the STEP /OVER command.

Normally, keys KP2, KP4, KP6, and KPS scroll screen displays down, left, right, or up, respectively. By putting the
keypad in the MOVE, EXPAND, or CONTRACT state, indicated in Figure 2.1, “Keypad Key Functions Predefined
by the Debugger---Command Interface”, you can also use these keys to move, expand, or contract displays in four
directions. Enter the command HELP Keypad_Def i ni t i ons to display the keypad key definitions.

You can redefine keypad key functions with the DEFINE /KEY command.

Placeholder
for images

34 VSI Confidential, NDA Required

Getting Started with the Debugger

2.2. Displaying Source Code

The debugger provides two modes for displaying information: noscreen mode and screen mode. By default, when
you start the debugger, you are in noscreen mode, but you might find that it is easier to view source code in screen
mode. The following sections briefly describe both modes.

2.2.1. Noscreen Mode

Noscreen mode is the default, line-oriented mode of displaying input and output. The interactive examples
throughout this chapter, excluding Section 2.2.2, “Screen Mode”, show noscreen mode.

In noscreen mode, use the TYPE command to display one or more source lines. For example, the following
command displays line 7 of the module in which execution is currently paused:

DBG> TYPE 7
nodul e SWAP_RCUTI NES 7. TEMP = A
DBG>

The display of source lines is independent of program execution. To display source code from a module
(compilation unit) other than the one in which execution is currently paused, use the TYPE command with a path
name to specify the module. For example, the following command displays lines 16 to 210of module TEST:

DBG> TYPE TEST\ 16: 21

Path names are discussed in more detail in Section 2.3.2, “Executing the Program by Step Unit”, with the STEP
command.

You can also use the EXAMINE /SOURCE command to display the source line for a routine or any other program
location that is associated with an instruction.

The debugger also displays source lines automatically when it suspends execution at a breakpoint or watch point,
after a STEP command, or when a trace point is triggered (see Section 2.3, “Controlling and Monitoring Program
Execution”).

After displaying source lines at various locations in your program, you can redisplay the location at which
execution is currently paused by pressing KP5.

If the debugger cannot locate source lines for display, it issues a diagnostic message. Source lines might not be
available for a variety of reasons. For example:

» Execution is paused within a module that was compiled or linked without the /DEBUG qualifier.
» Execution is paused within a system or shareable image routine for which no source code is available.

» The source file was moved to a different directory after it was compiled (the location of source files is embedded
in the object modules).In this case, use the SET SOURCE command to specify the new location.

* The module might need to be set with the SET MODULE command. Module setting is explained in
Section 2.5.1, “Setting and Canceling Modules”.

To switch to noscreen mode from screen mode, press PF1 PF3 (or type SET MODE NOSCREEN). You can use
the TYPE and EXAMINE /SOURCE commands in screen mode as well as noscreen mode.

2.2.2. Screen Mode

Screen mode provides the easiest way to view your source code. To switch to screen mode, press PF3 (or type
SET MODE SCREEN). In screen mode, by default the debugger splits the screen into three displays named SRC,
OUT, and PROMPT, as shown in Figure 2.2, “Default Screen Mode Display Configuration”.

VSI Confidential, NDA Required 35

Getting Started with the Debugger

Figure 2.2. Default Screen Mode Display Configuration

Placeholder
for images

The SRC display shows the source code of the module in which execution is currently paused. An arrow in the
left column points to the source line corresponding to the current value of the program counter (PC). The PC is
a register that contains the memory address of the instruction to be executed next. The line numbers, which are
assigned by the compiler, match those in a listing file. As you execute the program, the arrow moves down and
the source code is scrolled vertically to center the arrow in the display.

The OUT display captures the debugger's output in response to the commands that you enter. The PROMPT
display shows the debugger prompt, your input (the commands that you enter), debugger diagnostic messages,
and program output.

You can scroll both SRC and OUT to see whatever information might scroll beyond the display window's edge.
Press KP3 repeatedly as needed to select the display to be scrolled (by default, SRC is scrolled). Press KP8 to
scroll up and KP2 to scroll down. Scrolling a display does not affect program execution.

In screen mode, if the debugger cannot locate source lines for the routine in which execution is currently paused,
it tries to display source lines in the next routine down on the call stack for which source lines are available. If the
debugger can display source lines for such a routine, it issues the following message:

YOEBUG- | - SOURCESCOPE, Source lines not available for .0

\ %°C. Di spl aying source in a caller of the current routine.

DBG>

In such cases, the arrow in the SRC display identifies the line that contains code following the call statement in
the calling routine.

2.3. Controlling and Monitoring Program
Execution

This section explains how to perform the following tasks:

+ Start and resume program execution

» Execute the program to the next source line, instruction, or other step unit

* Determine where execution is currently paused

» Use breakpoints to suspend program execution at points of interest

» Use trace points to trace the execution path of your program through specified locations
» Use watchpoints to monitor changes in the values of variables

With this information you can pick program locations where you can then test and manipulate the contents of
variables as described in Section 2.4, “Examining and Manipulating Program Data”.

2.3.1. Starting or Resuming Program Execution

36 VSI Confidential, NDA Required

Getting Started with the Debugger

Use the GO command to start or resume program execution.

After it is started with the GO command, program execution continues until one of the following events occurs:
» The program completes execution

* A breakpoint is reached

* A watchpoint is triggered

* An exception is signaled

* You press Ctrl/C

With most programming languages, when you bring a program under debugger control, execution is initially
paused directly at the beginning of the main program. Entering a GO command at this point quickly enables you
to test for an infinite loop or an exception.

If an infinite loop occurs during execution, the program does not terminate, so the debugger prompt does not
reappear. To obtain the prompt, interrupt execution by pressing Ctrl/C (see Section 1.4, “Interrupting Program
Execution and Aborting Debugger Commands”). If you are using screen mode, the pointer in the source display
indicates where execution stopped. You can also use the SHOW CALLS command to identify the currently active
routine calls on the call stack (see Section 2.3.3, “Determining Where Execution Is Paused”).

If an exception that is not handled by your program is signaled, the debugger interrupts execution at that point
so that you can enter commands. You can then look at the source display and a SHOW CALLS display to find
where execution is paused.

The most common use of the GO command is in conjunction with breakpoints, tracepoints, and watchpoints,
as described in Section 2.3.4, “Suspending Program Execution with Breakpoints”, Section 2.3.5, “Tracing
Program Execution with Tracepoints”, and Section 2.3.6, “Monitoring Changes in Variables with Watchpoints”,
respectively. If you set a breakpoint in the path of execution and then enter the GO command, execution is paused
at that breakpoint. Similarly, if you set a tracepoint, execution is monitored through that tracepoint. If you set a
watchpoint, execution is paused when the value of the watched variable changes.

2.3.2. Executing the Program by Step Unit

Use the STEP command to execute the program one or more step units at a time.

By default, a step unit is one line of source code. In the following example, the STEP command executes one
line, reports the action ("stepped to ..."), and displays the line number (27) and source code of the line to be
executed next:

DBG> STEP

stepped to TEST\ COUNT\ %.| NE 27
27: X=X+ 1;

DBG>

Execution is now paused at the first machine-code instruction for line27 within routine COUNT of module TEST.

When displaying a program symbol (for example, a line number, routine name, or variable name), the debugger
always uses a path name. A path name consists of the symbol plus a prefix that identifies the symbol's location.
In the previous example, the path name is TEST \ COUNT \ %1 NE27. The leftmost element of a path name
is the module name. Moving toward the right, the path name lists any successively nested routines and blocks
that enclose the symbol. A backslash character (V) is used to separate elements (except when the language is Ada,
where a period is used to parallel Ada syntax).

A path name uniquely identifies a symbol of your program to the debugger. In general, you need to use path
names in commands only if the debugger cannot resolve a symbol ambiguity in your program (see Section 2.5,

VSI Confidential, NDA Required 37

Getting Started with the Debugger

“Controlling Access to Symbols in Your Program”). Usually the debugger can determine the symbol you mean
from its context.

When using the STEP command, note that only those source lines for which code instructions were generated by
the compiler are recognized as executable lines by the debugger. The debugger skips over any other lines - for
example, comment lines.

You can specify different stepping modes, such as stepping by instruction rather than by line (SET STEP
INSTRUCTION). Also, by default, the debugger steps over called routines-execution is not paused within a called
routine, although the routine is executed. By entering the SET STEP INTO command, you direct the debugger
to suspend execution within called routines as well as within the routine in which execution is currently paused
(SET STEP OVER is the default mode).

2.3.3. Determining Where Execution Is Paused

Use the SHOW CALLS command when you are unsure where execution is paused during a debugging session
(for example, after a Ctrl/C interruption).

The command displays a trace back that lists the sequence of calls leading to the routine in which execution
is paused. For each routine (beginning with the one in which execution is paused), the debugger displays the
following information:

* The name of the module that contains the routine

* The name of the routine

* The line number at which the call was made (or at which execution is paused, in the case of the current routine)

* The corresponding PC value

On Alpha and Integrity server processors, the PC is shown as a memory address relative to the first code address
in the module and also as an absolute address.

Note that on Integrity server processors, there is no hardware PC register. The PC is a software constructed
value, built by adding the hardware Instruction Pointer (IP) register and the slot offset of the instruction within
the bundle (0, 1, or 2).

For example:

DBG> SHOW CALLS

nmodul e name routi ne nane l'ine rel PC abs PC
*TEST PRODUCT 18 00000009 0000063C
*TEST COUNT 47 00000009 00000647
* MY_PROG MY_PROG 21 0000000D 00000653
DBG>

This example indicates that execution is paused at line 18 of routine PRODUCT (in module TEST), which was
called from line 47 of routine COUNT (in module TEST), which was called from line 21 of routine MY PROG
(in module MY _PROG).

2.3.4. Suspending Program Execution with
Breakpoints

The SET BREAK command enables you to select locations at which to suspend program execution
(breakpoints).You can then enter commands to check the call stack, examine the current values of variables, and
so on. You resume execution from a breakpoint with the GO or STEP commands.

The following example shows a typical use of the SET BREAK command:

38 VSI Confidential, NDA Required

Getting Started with the Debugger

DBG> SET BREAK COUNT
DBG GO
#
break at routine PROG2\ COUNT
54: procedure COUNT(X, Y:I|NTEGER);
DBG>

In the example, the SET BREAK command sets a breakpoint on routine COUNT (at the beginning of the routine's
code); the GO command starts execution. When routine COUNT is encountered, the following occurs:

» Execution is paused.

» The debugger announces that the breakpoint at COUNT has been reached ("break at ...").

The debugger displays the source line (54) at which execution is paused.
* The debugger prompts for another command.

At this breakpoint, you can use the STEP command to step through routine COUNT and then use the EXAMINE
command (discussed in Section 2.4.1, “Displaying the Value of a Variable”) to check on the values of X and Y.

When using the SET BREAK command, you can specify program locations using various kinds of address
expressions (for example, line numbers, routine names, memory addresses, byte offsets). With high-level
languages, you typically use routine names, labels, or line numbers, possibly with path names to ensure uniqueness.

Specify routine names and labels as they appear in the source code. Line numbers can be derived from either a
source code display or a listing file. When specifying a line number, use the prefix %LINE; otherwise, the debugger
interprets the line number as a memory location. For example, the following command sets a breakpoint at line
41 of the module in which execution is paused. The breakpoint causes the debugger to suspend execution at the
beginning of line 41.

DBG> SET BREAK %.1 NE 41

Note that you can set breakpoints only on lines that resulted in machine-code instructions. The debugger warns
you if you try to do otherwise (for example, on a comment line). To pick a line number in a module other than the
one in which execution is paused, you must specify the module's name in a path name. For example:

DBG> SET BREAK SCREEN | O %.1 NE 58

You can also use the SET BREAK command with a qualifier, but no parameter, to break on every line, or on
every CALL instruction, and so on. For example:

DBG> SET BREAK/ LI NE
DBG> SET BREAK/ CALL

You can set breakpoints on events, such as exceptions, or state transitions in tasking programs.

You can conditionalize a breakpoint (with a WHEN clause)or specify that a list of commands be executed at the
breakpoint (with a DO clause).

To display the current breakpoints, enter the SHOW BREAK command.

To deactivate a breakpoint, enter the DEACTIVATE BREAK command, and specify the program location
exactly as you did when setting the breakpoint. This causes the debugger to ignore the breakpoint during program
execution. However, you can activate it at a later time, for example, when you rerun the program (see Section 1.3.3,
“Rerunning the Same Program from the Kept Debugger”). A deactivated breakpoint is listed as such in a SHOW
BREAK display.

To activate a breakpoint, use the ACTIVATE BREAK command. Activating a breakpoint causes it to take effect
during program execution.

VSI Confidential, NDA Required 39

Getting Started with the Debugger

The commands DEACTIVATE BREAK/ALL and ACTIVATE BREAK/ALL operate on all breakpoints and
are particularly useful when rerunning a program.

To cancel a breakpoint, use the CANCEL BREAK command. A canceled breakpoint is no longer listed in a
SHOW BREAK display.

2.3.5. Tracing Program Execution with Tracepoints

The SET TRACE command enables you to select locations for tracing the execution of your program (tracepoints),
without stopping its execution. After setting a tracepoint, you can start execution with the GO command and then
monitor the path of execution, checking for unexpected behavior. By setting a tracepoint on a routine, you can
also monitor the number of time sit is called.

As with breakpoints, every time a tracepoint is reached, the debugger issues a message and displays the source
line. But the program continues executing, and the debugger prompt is not displayed. For example:

DBG> SET TRACE COUNT
DBG> GO
trace at routi ne PROG\ COUNT
54: procedure COUNT(X, Y:INTEGER)
#

This is the only difference between a breakpoint and a tracepoint. When using the SET TRACE command, you
specify address expressions, qualifiers, and optional clauses exactly as with the SET BREAK command. The
commands SHOW TRACE, ACTIVATE TRACE, DEACTIVATE TRACE, and CANCEL TRACE operate
on tracepoints in a manner similar to the corresponding commands for breakpoints (see Section 2.3.4, “Suspending
Program Execution with Breakpoints™).

2.3.6. Monitoring Changes in Variables with
Watchpoints

The SET WATCH command enables you to specify program variables that the debugger monitors as your program
executes. This process is called setting watchpoints. If the program modifies the value of a watched variable,
the debugger suspends execution and displays information. The debugger monitors watchpoints continuously
during program execution. (Note that you can also use the SET WATCH command to monitor arbitrary program
locations, not just variables.)

You can set a watch point on a variable by specifying the variable's name with the SET WATCH command. For
example, the following command sets a watch point on the variable TOTAL:

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the watchpoint is triggered.

Note

The technique you use to set watchpoints depends on your system (Alpha or Integrity servers) and the type of
variable, static or nonstatic. On Alpha systems, for example, a static variable is associated with the same memory
address throughout program execution.

The following example shows what happens when your program modifies the contents of this watched variable:

DBG> SET WATCH TOTAL

DBG GO

#

wat ch of SCREEN | O TOTAL at SCREEN | O %.1 NE 13
13: TOTAL = TOTAL + 1;
old value: 16

40 VSI Confidential, NDA Required

Getting Started with the Debugger

new val ue: 17
break at SCREEN | O %.1 NE 14
14: POP(TOTAL) ;
DBG>

In this example, a watchpoint is set on the variable TOTAL and execution is started. When the value of TOTAL
changes, execution is paused. The debugger announces the event ("watch of ..."), identifying where TOTAL
changed (the beginning of line 13) and the associated source line. The debugger then displays the old and new
values and announces that execution has been paused at the beginning of the next line (14). Finally, the debugger
prompts for another command. When a change in a variable occurs at a point other than the beginning of a source
line, the debugger gives the line number plus the byte offset from the beginning of the line.

On Alpha processors, you can set a watchpoint on a nonstatic variable by setting a tracepoint on the defining routine
and specifying a DO clause to set the watchpoint whenever execution reaches the tracepoint. Since a nonstatic
variable is allocated on the stack or in a register and exists only when its defining routine is active (on the call
stack), the variable name is not always meaningful in the way that a static variable name is.

In the following example, a watchpoint is set on the nonstatic variable Y in routine ROUT3. After the tracepoint is
triggered, the WPT TRACE message indicates that the nonstatic watchpoint is set, and the watchpoint is triggered
when the value of Y changes. For example:

DBG> SET TRACE/ NOSOURCE ROUT3 DO (SET WATCH V)

DBG> GO

#

trace at routine MOD4\ ROUT3

YOEBUG- | - WPTTRACE, nonstatic watchpoint, tracing every
i nstruction

#
wat ch of MOD4\ ROUT3\Y at MOD4\ ROUT3\ %.I NE 16
16: Y =4
ol d val ue: 3
new val ue: 4
break at MOD4\ ROUT3\ %I NE 17
17: SWAP(X, Y);
DBG>

When execution returns to the calling routine, the nonstatic variable is no longer active, so the debugger
automatically cancels the watchpoint and issues a message to that effect.

On Alpha processors and Integrity server, the debugger treats all watchpoints as nonstatic watchpoints.

The commands SHOW WATCH, ACTIVATE WATCH, DEACTIVATE WATCH, and CANCEL WATCH
operate on watchpoints in a manner similar to the corresponding commands for breakpoints (see Section 2.3.4,
“Suspending Program Execution with Breakpoints™). However, a nonstatic watchpoint exists only as long as
execution remains within the scope of the variable being watched.

2.4. Examining and Manipulating Program
Data

This section explains how to use the EXAMINE, DEPOSIT, and EVALUATE commands to display and modify
the contents of variables and evaluate expressions. Before you can examine or deposit into a nonstatic variable, as
defined in Section 2.3.6, “Monitoring Changes in Variables with Watchpoints”, its defining routine must be active.

2.4.1. Displaying the Value of a Variable

To display the current value of a variable, use the EXAMINE command. It has the following syntax:

EXAM NE addr ess-expressi on

VSI Confidential, NDA Required 41

Getting Started with the Debugger

The debugger recognizes the compiler-generated data type of the variable you specify and retrieves and formats
the data accordingly. The following examples show some uses of the EXAMINE command.

Examine a string variable:

DBG> EXAM NE EMPLOYEE_ NANE
PAYROLL\ EMPLOYEE_NAME:

"Peter C. Lonbardi”
DBG>

Examine three integer variables:

DBG> EXAM NE W DTH, LENGTH, AREA
S| ZE\ W DTH; 4

S| ZE\ LENGTH: 7

S| ZE\ AREA: 28

DBG>

Examine a two-dimensional array of real numbers (three per dimension):

DBG> EXAM NE REAL_ARRAY
PROG2\ REAL_ ARRAY

(1, 1): 27.01000
(1, 2): 31. 00000
(1, 3): 12. 48000
(2, 1): 15. 08000
(2, 2): 22. 30000
(2, 3): 18. 73000

DBG>

Examine element 4 of a one-dimensional array of characters:

DBG> EXAM NE CHAR ARRAY(4)
PROG2\ CHAR ARRAY(4): 'ni
DBG>

Examine a record variable (COBOL example):

DBG> EXAM NE PART
I NVENTORY\ PART:

| TEM "WF- 1247"
PRI CE: 49. 95
I N_STOCK: 24

DBG>
Examine a record component (COBOL example):

DBG> EXAM NE | N_STOCK COF PART
| NVENTORYA | N- STOCK of PART:

N STOCK: 24
DBG>

You can use the EXAMINE command with any kind of address expression (not just a variable name) to display
the contents of a program location. The debugger associates certain default data types with untyped locations. If

you want the data interpreted and displayed in some other data format you can override the defaults for typed
and untyped locations.

2.4.2. Assigning a Value to a Variable

To assign a new value to a variable, use the DEPOSIT command. It has the following syntax:

42 VSI Confidential, NDA Required

Getting Started with the Debugger

DEPOSI T addr ess- expressi on = | anguage- expressi on
The DEPOSIT command is like an assignment statement in most programming languages.

In the following examples, the DEPOSIT command assigns new values to different variables. The debugger
checks that the value assigned, which can be a language expression, is consistent with the data type and dimensional
constraints of the variable.

Deposit a string value (it must be enclosed in quotation marks (") or apostrophes ('):
DBG> DEPCSI T PART_NUMBER = "WG 7619. 3- 84"

Deposit an integer expression:

DBG> DEPCSI T W DTH = CURRENT_W DTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire array aggregate with a single DEPOSIT
command, only an element):

DBG> DEPOSI T C_ARRAY(12) := 'K

Deposit a record component (you cannot deposit an entire record aggregate with a single DEPOSIT command,
only a component):

DBG> DEPOSI T EMPLOYEE. ZI PCODE = 02172
Deposit an out-of-bounds value (X was declared as a positive integer):

DBG> DEPCSIT X = -14
YOEBUG | - | VALOUTBNDS, val ue assigned is out of bounds
at or near DEPOSIT

As with the EXAMINE command, you can specify any kind of address expression (not just a variable name)
with the DEPOSIT command. You can override the defaults for typed and untyped locations if you want the data
interpreted in some other data format.

2.4.3. Evaluating Language Expressions

To evaluate a language expression, use the EVALUATE command. It has the following syntax:
EVALUATE | anguage- expr essi on

The debugger recognizes the operators and expression syntax of the currently set language. In the following
example, the value 45 is assigned to the integer variable W DTH; the EVALUATE command then obtains the sum
of the current value of W DTHand 7:

DBG> DEPCSI T WDTH : = 45
DBG> EVALUATE WDTH + 7
52

DBG>

In the next example, the values TRUE and FALSE are assigned to the Boolean variables WILLING and ABLE,
respectively; the EVALUATE command then obtains the logical conjunction of these values:

DBG> DEPCSI T WLLING : = TRUE
DBG> DEPCSI T ABLE : = FALSE
DBG> EVALUATE W LLI NG AND ABLE
Fal se

DBG>

VSI Confidential, NDA Required 43

Getting Started with the Debugger

2.5. Controlling Access to Symbols in Your
Program

To have full access to the symbols that are associated with your program (variable names, routine names, source
code, line numbers, and so on), you must compile and link the program using the /DEBUG qualifier, as explained
in Section 1.2, “Preparing an Executable Image for Debugging”.

Under these conditions, the way in which the debugger handles these symbols is transparent to you in most cases.
However, the following two are as might require action:

* Setting and canceling modules

» Resolving symbol ambiguities

2.5.1. Setting and Canceling Modules

To facilitate symbol searches, the debugger loads symbol information from the executable image into a run-time
symbol table (RST), where that information can be accessed efficiently. Unless symbol information is in the RST,
the debugger does not recognize or properly interpret the associated symbols.

Because the RST takes up memory, the debugger loads it dynamically, anticipating what symbols you might want
to reference in the course of program execution. The loading process is called module setting, because all symbol
information for a given module is loaded into the RST atone time.

Initially, only the module containing the image transfer address is set. Subsequently, whenever execution of the
program is interrupted, the debugger sets the module that contains the routine in which execution is paused. This
enables you to reference the symbols that should be visible at that location.

If you try to reference a symbol in a module that has not been set, the debugger warns you that the symbol is not
in the RST. For example:

DBG> EXAM NE K
YDEBUG- W NOSYMBOL, synbol 'K is not in synbol table
DBG>

You must use the SET MODULE command to set the module containing that symbol explicitly. For example:

DBG> SET MODULE MOD3
DBG> EXAM NE K

MOD3\ ROUT2\ K: 26
DBG>

The SHOW MODULE command lists the modules of your program and identifies which modules are set.

Dynamic module setting can slow the debugger down as more and more modules are set. If performance becomes a
problem, you can use the CANCEL MODULE command to reduce the number of set modules, or you can disable
dynamic module setting by entering the SET MODE NODYNAMIC command (SET MODE DYNAMIC
enables dynamic module setting).

2.5.2. Resolving Symbol Ambiguities

Symbol ambiguities can occur when a symbol (for example, a variable name X)is defined in more than one routine
or other program unit.

In most cases, the debugger resolves symbol ambiguities automatically. First, it uses the scope and visibility rules
of'the currently set language. In addition, because the debugger permits you to specify symbols in arbitrary modules
(to set breakpoints and so on), the debugger uses the ordering of routine calls on the call stack to resolve symbol
ambiguities.

44 VSI Confidential, NDA Required

Getting Started with the Debugger

If the debugger cannot resolve a symbol ambiguity, it issues a message. For example:

DBG> EXAM NE Y
YOEBUG- W NOUNI QUE, synmbol 'Y' is not unique
DBG>

You can then use a path-name prefix to uniquely specify a declaration of the given symbol. First, use the SHOW
SYMBOL command to identify all pathnames associated with the given symbol (corresponding to all declarations
of that symbol) that are currently loaded in the RST. Then use the desired path-name prefix when referencing the
symbol. For example:

DBG> SHOW SYMBCL Y

data MOD7\ ROUT3\ BLOCK1\ Y
data MOD4\ ROUT2\' Y

DBG> EXAM NE MOD4\ ROUT2\' Y
MOD4\ ROUT2\ Y: 12

DBG>

If you need to refer to a particular declaration of Y repeatedly, use the SET SCOPE command to establish a new
default scope for symbol lookup. Then, references to Y without a path-name prefix specify the declaration of Y
that is visible in the new scope. For example:

DBG> SET SCOPE MOD4\ ROUT2
DBG> EXAM NE Y

MOD4\ ROUT2\ Y: 12

DBG>

To display the current scope for symbol lookup, use the SHOW SCOPE command. To restore the default scope,
use the CANCEL SCOPE command.

2.6. Sample Debugging Session

This section walks you through a debugging session with a simple Fortran program that contains a logic error (see
Example 2.1, “Sample Program SQUARES”). Compiler-assigned line numbers have been added in the example
so that you can identify the source lines referenced in the discussion.

The program, called SQUARES, performs the following functions:

1. Reads a sequence of integer numbers from a data file and saves these numbers in the array INARR (lines 4
and 5).

2. Enters a loop in which it copies the square of each nonzero integer into another array OUTARR (lines 8 through
13).

3. Prints the number of nonzero elements in the original sequence and the square of each such element (lines 16
through 21).

Example 2.1. Sample Program SQUARES

| NTEGER | NARR(20), OUTARR(20)

C

C ---Read the input array fromthe data file.
OPEN(UNI T=8, FI LE=' DATAFI LE. DAT', STATUS=' OLD)
READ(8, *) N, (INARR(l), 1=1, N

C ---Square all nonzero elenents and store in OQUTARR
K=0
DO
I = 1, NO: IF(INARR(I) .NE. 0) THEN

RPN RWONE
(@)

[

OUTARR(K) = | NARR(|)**2

VSI Confidential, NDA Required 45

Getting Started with the Debugger

12: ENDI F

13: 10 CONTI NUE

14: C

15: C ---Print the squared output values. Then stop.
16: PRI NT 20, K

17: 20 FORVAT(' Nunmber of nonzero elenents is', 14)
18: DO40 I =1, K

19: PRI NT 30, |, OUTARR(I)

20: 30 FORVAT(' Elenent', 14, ' has value', 16)

21: 40 CONTI NUE

22: END

When you run SQUARES, it produces the following output, regardless of the number of nonzero elements in the
data file:

$ RUN SQUARES
Nurmmber of nonzero el enents is 0

The error in the program is that variable K, which keeps track of the current index into OUTARR, is not incremented
in the loop on lines 9 through 13. The statement K = K + 1 should be inserted just before line 11.

Example 2.2, “Sample Debugging Session Using Program SQUARES” shows how to start the debugging session
and then how to use the debugger to find the error. Comments, keyed to the callouts, follow the example.

Example 2.2. Sample Debugging Session Using Program SQUARES

$ FORTRAN DEBUG NOOPTI M ZE SQUARES (1]
$ LI NK/ DEBUG SQUARES (2]
$ DEBUG KEEP (3]
Debugger Banner and Versi on Number

DBG> RUN SQUARES o
Language: FORTRAN, Modul e: SQUARES$MAI N
DBG> STEP 4 (5]
st epped to SQUARESSMAI N\ %1 NE 9

9: DO10 I =1, N
DBG> EXAM NE N, K (6]
SQUARES$NMAI N\ N: 9
SQUARES$MAI N\ K: 0
DBG> STEP 2 (7]
st epped t o SQUARESSMAI N\ %41 NE 11

11: QUTARR(K) = I NARR(I)**2
DBG> EXAM NE |, K (8]
SQUARESS$NMAI N\ | 1
SQUARES$NMAI N\ K: 0
DBG> DEPCSIT K = 1 o
DBG> SET TRACE/ SILENT %.I NE 11 DO (DEPCSIT K = K + 1) 19]
DBG> GO ®
Nunber of nonzero elenents is 4
El enent 1 has val ue 16
El enent 2 has val ue 36
El enent 3 has val ue 9
El enent 4 has val ue 49
"Normal successful conpletion'
DBG> SPAVWN 12]
$ EDI T SQUARES. FOR ®
#
10: I F(INARR(1) .NE. 0) THEN

46 VSI Confidential, NDA Required

Getting Started with the Debugger

11:
12:
13:

#

K=K+1
OUTARR(K) = | NARR(1)**2
ENDI F

$ FORTRAN DEBUG NOOPTI M ZE SQUARES ®
$ LI NK/ DEBUG SQUARES

$ LOGOUT ®
DBG> RUN SQUARES 6]
Language: FORTRAN, Mdul e: SQUARES$MAI N

DBG> SET BREAK %.INE 12 DO (EXAM NE |, K) ®
DBG GO ®
SQUARES$SMAI N | : 1

SQUARES$MAI N\ K: 1

DBG GO

SQUARESSMAI N\ | :

N

SQUARESSMAI N\ K: 2
DBG> GO

SQUARESSMAI N\ | :
SQUARESSMAI N\ K:

w b

DBG EXIT ®

$

The following comments apply to the callouts in Example 2.2, “Sample Debugging Session Using Program
SQUARES”. Example 2.1, “Sample Program SQUARES” shows the program that is being debugged.

(1]

The /DEBUG qualifier on the DCL FORTRAN command directs the compiler to write the symbol
information associated with SQUARES into the object module, SQUARES. OBJ, in addition to the code and
data for the program.

The /NOOPTIMIZE qualifier disables optimization by the Fortran compiler, which ensures that the
executable code matches the source code of the program. Debugging optimized code can be confusing
because the contents of some program locations might be inconsistent with what you would expect from
viewing the source code.

The /DEBUG qualifier on the DCL command LINK causes the linker to include all symbol information that
is contained in SQUARES. OBJ in the executable image.

The DCL command DEBUG /KEEP starts the debugger, which displays its banner and the debugger prompt,
DBG>. You can now enter debugger commands.

The debugger command RUN SQUARES brings the program SQUARES under debugger control. The
informational message identifies the source language of the program and the name of the main program unit
(FORTRAN and SQUARES, respectively, in this example).

Execution is initially paused at the start of the main program unit (line 1 of SQUARES, in this example).
You decide to test the values of variables N and K after the READ statement has been executed and the
value 0 has been assigned to K.

The command STEP 4 executes 4 source lines of the program. Execution is now paused at line 9. Note that
the STEP command ignores source lines that do not result in executable code; also, by default, the debugger
identifies the source line at which execution is paused.

The command EXAMINE N, K displays the current values of N and K. Their values are correct at this point
in the execution of the program.

The command STEP 2 executes the program into the loop that copies and squares all nonzero elements of
INARR into OUTARR.

The command EXAMINE I, K displays the current values of I and K.

I has the expected value 1, but K has the value 0 instead of 1, which is the expected value. Now you can see
the error in the program: K should be incremented in the loop just before it is used in line 11.

The DEPOSIT command assigns K the value it should have now: 1.

The SET TRACE command is now used to patch the program so that the value of K is incremented
automatically in the loop. The command sets a trace point that triggers every time execution reaches line 11:

VSI Confidential, NDA Required 47

Getting Started with the Debugger

* The /SILENT qualifier suppresses the "trace at" message that would otherwise appear each time line 11
is executed.

* The DO clause issues the DEPOSIT K = K + 1 command every time the tracepoint is triggered.

® To test the patch, the GO command starts execution from the current location.
The program output shows that the patched program works properly. The EXIT STATUS message shows
that the program executed to completion.

@ The SPAWN command spawns a subprocess to return control temporarily to DCL level (without ending the
debugging session) so that you can correct the source file and recompile and relink the program.

® The EDIT command invokes an editor and the source file is edited to add K = K + 1 after line 10, as shown.
(Compiler-assigned line numbers have been added to clarify the example.)

® The revised program is compiled and linked.

® The LOGOUT command terminates the spawned subprocess and returns control to the debugger.

® The (debugger) command RUN SQUARES brings the revised program under debugger control so that its
correct execution can be verified.

® The SET BREAK command sets a breakpoint that triggers every time line 12 is executed. The DO clause
displays the values of I and K automatically when the breakpoint triggers.

® The GO command starts execution.
At the first breakpoint, the value of K is 1, indicating that the program is running correctly so far. Each
additional GO command shows the current values of I and K. After two more GO commands, K is now 3,
as expected, but note that I is 4. The reason is that one of the INARR elements was 0 so that lines 11 and
12 were not executed (and K was not incremented) for that iteration of the DO loop. This confirms that the
program is running correctly.

® The EXIT command ends the debugging session and returns control to DCL level.

48 VSI Confidential, NDA Required

Controlling and Monitoring
Program Execution

Chapter 3. Controlling and Monitoring
Program Execution

This chapter describes how to control and monitor program execution while debugging by using the following
techniques:

» Executing the program by step unit

* Suspending and tracing execution with breakpoints and tracepoints

* Monitoring changes in variables and other program locations with watchpoints

The following related functions are discussed in Chapter 2, Getting Started with the Debugger :

* Starting or resuming program execution with the GO command (Section 2.3.1, “Starting or Resuming Program
Execution”)

* Monitoring where execution is currently paused with the SHOW CALLS command (Section 2.3.3,
“Determining Where Execution Is Paused”)

This chapter includes information that is common to all programs. For more information:

* See Chapter 15, Debugging Multiprocess Programs for additional information specific to multiprocess
programs.

* See Chapter 16, Debugging Tasking Programs for additional information specific to tasking (multithread)
programs.

For information about rerunning your program or running another program from the current debugging session,
see Section 1.3.3, “Rerunning the Same Program from the Kept Debugger”’and Section 1.3.4, “Running Another
Program from the Kept Debugger”.

3.1. Commands Used to Execute the Program

Only four debugger commands are directly associated with program execution:

GO

STEP

CALL

EXIT (if your program has exit handlers)

As explained in Section 2.3.1, “Starting or Resuming Program Execution” and Section 2.3.2, “Executing the
Program by Step Unit”, GO and STEP are the basic commands for starting and resuming program execution. The
STEP command is discussed further in Section 3.2, “Executing the Program by Step Unit”.

During a debugging session, routines are executed as they are called during the execution of a program. The CALL
command enables you to arbitrarily call and execute a routine that was linked with your program. This command
is discussed in Section 13.7, “Calling Routines Independently of Program Execution”.

The EXIT command was discussed in Section 1.8, “Ending a Debugging Session”, in conjunction with ending
a debugging session. Because it executes any exit handlers in your program, it is also useful for debugging exit
handlers (see Section 14.6, “Debugging Exit Handlers”).

When using any of these four commands, note that program execution can be interrupted or stopped by any of
the following events:

* The program terminates

VSI Confidential, NDA Required 49

Controlling and Monitoring
Program Execution

* A breakpoint is reached
* A watchpoint is triggered
* An exception is signaled

* You press Ctrl/C

3.2. Executing the Program by Step Unit

The STEP command (probably the most frequently used debugger command) enables you to execute your program
in small increments called step units.

By default, a step unit is an executable line of source code. In the following example, the STEP command executes
one line, reports the action ("stepped to ..."), and displays the line number (27) and source code of the next line
to be executed:

DBG> STEP

stepped to TEST\ COUNT\ %.| NE 27
27: X=X+ 1;

DBG>

Execution is now paused at the first machine-code instruction for line 27 of module TEST. Line 27 is in COUNT,
a routine within module TEST.

The STEP command can also execute several source lines at a time. If you specify a positive integer as a parameter,
the STEP command executes that number of lines. In the following example, the STEP command executes the
next three lines:

DBG> STEP 3

stepped to TEST\ COUNT\ %.1 NE 34
34: SWAP (X, VY);

DBG>

Note that only those source lines for which code instructions were generated by the compiler are recognized as
executable lines by the debugger. The debugger skips over any other lines - for example, comment lines. Also, if a
line has more than one statement on it, the debugger executes all the statements on that line as part of the single step.

Source lines are displayed by default after stepping if they are available for the module being debugged. Source
lines are not available if you are stepping in code that has not been compiled or linked with the /DEBUG qualifier
(for example, a shareable image routine). If source lines are available, you can control their display with the SET
STEP [NO]SOURCE command and the /[NO]SOURCE qualifier of the STEP command. For information about
how to control the display of source code in general and in particular after stepping, see Chapter 6, Controlling
the Display of Source Code.

3.2.1. Changing the STEP Command Behavior

You can change the default behavior of the STEP command in two ways:
* By specifying a STEP command qualifier - for example, STEP /INTO
* By establishing a new default qualifier with the SET STEP command - for example, SET STEP INTO

In the following example, the STEP /INTO command steps into a called routine when the program counter (PC)
is at a call statement. The debugger displays the source line identifying the routine PRODUCT, which is called
from routine COUNT of module TEST:

DBG> STEP/ I NTO
st epped to routi ne TEST\ PRODUCT

50 VSI Confidential, NDA Required

Controlling and Monitoring
Program Execution

6: function PRODUCT (X, Y : INTEGER) return |INTEGER is
DBG>

After the STEP /INTO command executes, subsequent STEP commands revert to the default behavior.

In contrast, the SET STEP command enables you to establish new defaults for the STEP command. These defaults
remain in effect until another SET STEP command is entered. For example, the SET STEP INTO command
causes subsequent STEP commands to behave like STEP /INTO (SET STEP LINE causes subsequent STEP
commands to behave like STEP /LINE).

There is a SET STEP command parameter for each STEP command qualifier.

You can override the current STEP command defaults for the duration of a single STEP command by specifying
other qualifiers. Use the SHOW STEP command to identify the current STEP command defaults.

3.2.2. Stepping Into and Over Routines

By default, when the PC is at a call statement and you enter the STEP command, the debugger steps over the called
routine. Although the routine is executed, execution is not paused within the routine but, rather, on the beginning
of the line that follows the call statement. When stepping by instruction, execution is paused on the instruction
that follows a called routine's return instruction.

To step into a called routine when the PC is at a call statement, enter the STEP /INTO command. The following
example shows how to step into the routine PRODUCT, which is called from routine COUNT of module TEST:

DBG> STEP
stepped to TEST\ COUNT\ %.| NE 18
18: AREA : = PRODUCT (LENGTH, W DTH);

DBG> STEP/ I NTO
stepped to routi ne TEST\ PRODUCT

6: function PRODUCT (X, Y : INTEGER) return |INTEGER is
DBG>

To return to the calling routine from any point within the called routine, use the STEP /RETURN command. It
causes the debugger to step to the return instruction of the routine being executed. A subsequent STEP command
brings you back to the statement that follows the routine call. For example:

DBG> STEP/ RETURN
stepped on return from TEST\ PRODUCT\ %1 NE 11 to TEST\ PRODUCT\ %.1 NE 15+4

15: end PRODUCT;
DBG> STEP
stepped to TEST\ COUNT\ %.| NE 19

19: LENGTH : = LENGIH + 1;
DBG>

To step into several routines, enter the SET STEP INTO command to change the default behavior of the STEP
command from STEP /OVER to STEP /INTO:

DBG> SET STEP | NTO

As a result of this command, when the PC is at a call statement, a STEP command suspends execution within the
called routine. If you later want to step over routine calls, enter the SET STEP OVER command.

When SET STEP INTO is in effect, you can qualify the kinds of called routines that the debugger is stepping into
by specifying any of the following parameters with the SET STEP command:

* [NO]JSHARE - Controls whether to step into called routines in shareable images.

* [NOJSYSTEM - Controls whether to step into called system routines.

VSI Confidential, NDA Required 51

Controlling and Monitoring
Program Execution

These parameters make it possible to step into application-defined routines and automatically step over system
routines, and so on. For example, the following command directs the debugger to step into called routines in user
space only. The debugger steps over routines in system space and in shareable images.

DBG> SET STEP | NTO, NOSYSTEM NOSHARE

3.3. Suspending and Tracing Execution with
Breakpoints and Tracepoints

This section discusses using the SET BREAK and SET TRACE commands to, respectively, suspend and trace
program execution. The commands are discussed together because of their similarities.

SET BREAK Command Overview

The SET BREAK command lets you specify program locations or events at which to suspend program execution
(breakpoints). After setting a breakpoint, you can start or resume program execution with the GO command,
letting the program run until the specified location or condition is reached. When the breakpoint is triggered,
the debugger suspends execution, identifies the breakpoint, and displays the DBG> prompt. You can then enter
debugger commands - for example, to determine where you are (with the SHOW CALLS command), step into
a routine, examine or modify variables, and so on.

The syntax of the SET BREAK command is as follows:

SET BREAK[/ qualifier [...]][addr ess- expressi on [cceeec]]
[WHEN (condi ti onal - expr essi on)]

[DO (conmmand [...])]

The following example shows a typical use of the SET BREAK command and shows the general default behavior
of the debugger at a breakpoint.

In this example, the SET BREAK command sets a breakpoint on routine COUNT (at the beginning of the
routine's code). The GO command starts execution. When routine COUNT is encountered, execution is paused,
the debugger announces that the breakpoint at COUNT has been reached ("break at ..."), displays the source line
(54) where execution is paused, and prompts for another command:

DBG> SET BREAK COUNT
DBG GO
#
break at routine PROG2\ COUNT
54: procedure COUNT (X, Y:INTEGER);
DBG>

SET TRACE Command Overview

The SET TRACE command lets you select program locations or events for tracing the execution of your program
without stopping its execution (tracepoints). After setting a tracepoint, you can start execution with the GO
command and then monitor that location, checking for unexpected behavior. By setting a tracepoint on a routine,
you can also monitor the number of times it is called.

The debugger's default behavior at a tracepoint is identical to that at a breakpoint, except that program execution
continues past a tracepoint. Thus, the DBG> prompt is not displayed when a tracepoint is reached and announced
by the debugger.

Except for the command name, the syntax of the SET TRACE command is identical to that of the SET BREAK
command:

52 VSI Confidential, NDA Required

Controlling and Monitoring
Program Execution

SET TRACE[/ qualifier [...]][addr ess- expression][...]]
[WHEN (condi ti onal - expr essi on)]
[DO (conmand]...])]

The SET TRACE and SET BREAK commands have similar syntax. When using the SET TRACE command,
specify address expressions, qualifiers, and the optional WHEN and DO clauses exactly as with the SET BREAK
command.

Unless you use the TEMPORARY qualifier on the SET BREAK or SET TRACE command, breakpoints and
tracepoints remain in effect until you:

* Deactivate or cancel them (see Section 3.3.7, “Deactivating, Activating, and Canceling Breakpoints or
Tracepoints™)

* Rerun the program with the RERUN/NOSAVE command (see Section 1.3.3, “Rerunning the Same Program
from the Kept Debugger”)

* Run a new program (see Section 1.3.4, “Running Another Program from the Kept Debugger”) or end the
debugging session (Section 1.8, “Ending a Debugging Session”)

To identify all of the breakpoints or tracepoints that are currently set, use the SHOW BREAK or SHOW TRACE
command.

To deactivate, activate, or cancel breakpoints or tracepoints, use the following commands (see Section 3.3.7,
“Deactivating, Activating, and Canceling Breakpoints or Tracepoints”):

DEACTIVATE BREAK, DEACTIVATE TRACE
ACTIVATE BREAK, ACTIVATE TRACE
CANCEL BREAK, CANCEL TRACE

The following sections describe how to specify program locations and events with the SET BREAK and SET
TRACE commands.

3.3.1. Setting Breakpoints or Tracepoints on Individual
Program Locations

To set a breakpoint or a tracepoint on a particular program location, specify an address expression with the SET
BREAK or SET TRACE command.

Fundamentally, an address expression specifies a memory address or a register. Because the debugger understands
the symbols associated with your program, the address expressions you typically use with the SET BREAK or
SET TRACE command are routine names, labels, or source line numbers rather than memory addresses - the
debugger converts these symbols to addresses.

3.3.1.1. Specifying Symbolic Addresses

Note

In some cases, when using the SET BREAK or SET TRACE command with a symbolic address expression, you
might need to set a module or specify a scope or a path name. Those concepts are described in detail in Chapter 5,
Controlling Access to Symbols in Your Program. The examples in this section assume that all modules are set and
that all symbols referenced are uniquely defined, unless otherwise indicated.

The following examples show how to set a breakpoint on a routine (SWAP) and a tracepoint on a label (LOOP1):

DBG> SET BREAK SWAP
DBG> SET TRACE LOOP1

VSI Confidential, NDA Required 53

Controlling and Monitoring
Program Execution

The next command sets a breakpoint on the return instruction of routine SWAP. Breaking on the return instruction
of a routine lets you inspect the local environment (for example, to obtain the values of local variables) while the
routine is still active.

DBG> SET BREAK/ RETURN SWAP

Some languages, for example Fortran, use numeric labels. To set a breakpoint or a tracepoint on a numeric label,
you must precede the number with the built-in symbol %LABEL. Otherwise, the debugger interprets the number
as a memory address. For example, the following command sets a tracepoint on label 20:

DBG> SET TRACE %.ABEL 20

You can set a breakpoint or a tracepoint on a line of source code by specifying the line number preceded by the
built-in symbol %LINE. The following command sets a breakpoint on line 14:

DBG> SET BREAK %.1 NE 14

The previous breakpoint causes execution to pause on the first instruction of line 14. You can set a breakpoint or
a tracepoint only on lines for which the compiler generated instructions (lines that resulted in executable code).
If you specify aline number that is not associated with an instruction, such as a comment line or a statement that
declares but does not initialize a variable, the debugger issues a diagnostic message. For example:

DBG> SET BREAK %.1 NE 6

YOEBUG- | -LINEINFO, no line 6, previous line is 5 next lineis 8
YOEBUG- E- NOSYMBOL, synmbol '9%.INE 6' is not in the symbol table
DBG>

The previous messages indicate that the compiler did not generate instructions for lines 6 or 7 in this case.

Some languages allow more than one statement on a line. In such cases, you can use statement numbers to
differentiate among statements on the same line. A statement number consists of a line number, followed by a
period (.), and a number indicating the statement. The syntax is as follows:

%.1 NE | i ne- nunber . st at enment - nunber

For example, the following command sets a tracepoint on the second statement of line 38:
DBG> SET TRACE %.1 NE 38. 2

When searching for symbols that you reference in commands, the debugger uses the conventions described in
Section 5.3.1, “Symbol Lookup Conventions”. That is, it first looks within the module where execution is currently
paused, then in other scopes associated with routines on the call stack, and so on. Therefore, to specify a symbol
that is defined in more than one module, such as a line number, you might need to use a path name. For example,
the following command sets a tracepoint on line 27 of module MOD4:

DBG> SET TRACE MOD4\ %.I NE 27

Remember the symbol lookup conventions when specifying a line number in debugger commands. If that line
number is not defined in the module where execution is paused (because it is not associated with an instruction),
the debugger uses the symbol lookup conventions to locate another module where the line number is defined.

When specifying address expressions, you can combine symbolic addresses with byte offsets. Thus, you can set
a breakpoint or a tracepoint on a particular instruction by specifying its line number and the byte offset from the
beginning of that line to the first byte of the instruction. For example, the next command sets a breakpoint on the
address that is five bytes beyond the beginning of line 23:

DBG> SET BREAK %.1 NE 23+5

3.3.1.2. Specifying Locations in Memory

To set a breakpoint or a tracepoint on a location in memory, specify its numerical address in the currently set radix.
The default radix for both data entry and display is decimal for most languages.

54 VSI Confidential, NDA Required

Controlling and Monitoring
Program Execution

On Alpha processors, the exceptions are BLISS, MACRO--32, and MACRO--64, which have a default radix of
hexadecimal.

On Integrity server, the exceptions are BLISS, MACRO--32, and Intel Assembler.
For example, the following command sets a breakpoint at address 2753, decimal, or at address 2753, hexadecimal:
DBG> SET BREAK 2753

You can specify a radix when you enter an individual integer literal (such as 2753) by using one of the built-
in symbols %BIN, %OCT, %DEC, or %HEX. For example, in the following command line the symbol %HEX
specifies that 2753 should be treated as a hexadecimal integer:

DBG> SET BREAK %HEX 2753

Note that when specifying a hexadecimal number that starts with a letter rather than a number, you must add a
leading 0. Otherwise, the debugger tries to interpret the entity specified as a symbol declared in your program.

For additional information about specifying radixes and about the built-in symbols %BIN, %DEC, %HEX, and
%OCT, see Section 4.1.10, “Specifying a Radix for Entering or Displaying Integer Data” and Appendix B, Built-
In Symbols and Logical Names.

If a breakpoint or a tracepoint was set on a numerical address that corresponds to a symbol in your program, the
SHOW BREAK or SHOW TRACE command identifies the breakpoint symbolically.

3.3.1.3. Obtaining and Symbolizing Memory Addresses

Use the EVALUATE /ADDRESS command to determine the memory address associated with a symbolic address
expression, such as a line number, routine name, or label. For example:

DBG> EVALUATE/ ADDRESS SWAP
1536

DBG> EVALUATE/ ADDRESS %.1 NE 26
1629

DBG>

The address is displayed in the current radix. You can specify a radix qualifier to display the address in another
radix. For example:

DBG> EVALUATE/ ADDRESS/ HEX %.1 NE 26
0000065D
DBG>

The SYMBOLIZE command does the reverse of EVALUATE /ADDRESS. It converts a memory address into
its symbolic representation (including its path name)if such a representation is possible. Chapter 5, Controlling
Access to Symbols in Your Program explains how to control symbolization. See Section 4.1.11, “Obtaining and
Symbolizing Memory Addresses” for more information about obtaining and symbolizing addresses.

3.3.2. Setting Breakpoints or Tracepoints on Lines or
Instructions

The following SET BREAK and SET TRACE command qualifiers cause the debugger to break on or trace every
source line or every instruction of a particular class:

/LINE
/BRANCH
/CALL
/INSTRUCTION

When using these qualifiers, do not specify an address expression.

VSI Confidential, NDA Required 55

Controlling and Monitoring
Program Execution

For example, the following command causes the debugger to break on the beginning of every source line
encountered during execution:

DBG> SET BREAK/ LI NE

The instruction-related qualifiers are especially useful for opcode tracing, which is the tracing of all instructions
or the tracing of a class of instructions. The next command causes the debugger to trace every branch instruction
encountered (for example BEQL, BGTR, and so on):

DBG> SET TRACE/ BRANCH
Note that opcode tracing slows program execution.

By default, when you use the qualifiers discussed in this section, the debugger breaks or traces within all called
routines as well as within the currently executing routine (this is equivalent to specifying SETBREAK /INTO or
SET TRACE /INTO). By specifying SET BREAK /OVER or SETTRACE /OVER, you can suppress break or
trace action within all called routines. Or, you can use the /[NO]JSB, /[NO]SHARE, or /[NO]SYSTEM qualifiers
to specify the kinds of called routines where break or trace action is to be suppressed. For example, the next
command causes the debugger to break on every line except within called routines that are in shareable images
or system space:

DBG> SET BREAK/ LI NE/ NOSHARE/ NOSYSTEM

3.3.3. Setting Breakpoints on Emulated Instructions
(Alpha Only)

On Alpha systems, to cause the debugger to suspend program execution when an instruction is emulated, use
the command SET BREAK /SYSEMULATE. The syntax of the SET BREAK command when using the /
SYSEMULATE qualifier is:

SET BREAK/ SYSEMULATE [=mask]

The optional argument mask is a quad word with bits set to specify which instruction groups shall trigger
breakpoints. The only emulated instruction group currently defined consists of the BY TE and WORD instructions.
Specify this instruction group by setting bit 0 of mask to 1.

If you do not specify mask, or if mask = FFFFFFFFFFFFFFFF, the debugger stops program execution
whenever the operating system emulates any instruction.

3.3.4. Controlling Debugger Action at Breakpoints or
Tracepoints

The SET BREAK and SET TRACE commands provide several options for controlling the behavior of the
debugger at breakpoints and tracepoints - the /AFTER, /[NO]JSILENT, /[NO]SOURCE, and /TEMPORARY
command qualifiers, and the optional WHEN and DO clauses. The following examples show several of these
options.

The following command sets a breakpoint on line 14 and specifies that the breakpoint take effect after the fifth
time that line 14 is executed:

DBG> SET BREAK/ AFTER' 5 %.1 NE 14

The following command sets a tracepoint that is triggered at every line of execution. The DO clause obtains the
value of the variable X when each line is executed:

DBG> SET TRACE/ LI NE DO (EXAM NE X)

The following example shows how you capture the WHEN and DO clauses together. The command sets a
breakpoint at line 27. The breakpoint is triggered (execution is paused) only when the value of SUM is greater

56 VSI Confidential, NDA Required

Controlling and Monitoring
Program Execution

than 100 (not each time line 27 is executed). The DO clause causes the value of TEST_RESULT to be examined
whenever the breakpoint is triggered - that is, whenever the value of SUM is greater than 100. If the value of
SUM is not greater than 100 when execution reaches line 27, the breakpoint is not triggered and the DO clause
is not executed.

DBG> SET BREAK %41 NE 27 WHEN (SUM > 100) DO (EXAM NE TEST RESULT)

See Section 4.1.6, “Evaluating Language Expressions” and Section 14.3.2.2, “Evaluating Language Expressions”
for information about evaluating language expressions like SUM > 100.

The /SILENT qualifier suppresses the break or trace message and source code display. This is useful when, for
example, you want to use the SET TRACE command only to execute a debugger command at the tracepoint. In
the following example, the SET TRACE command is used to examine the value of the Boolean variable STATUS
at the tracepoint:

DBG> SET TRACE/ SI LENT %.1 NE 83 DO (EXAM NE STATUS)
DBG> GO

#

SCREEN_| O CLEAR\ STATUS: OFF

#

In the next example, the SET TRACE command is used to count the number of times line 12 is executed. The
first DEFINE /VALUE command defines a symbol COUNT and initializes its value to 0. The DO clause of the
SET TRACE command causes the value of COUNT to be incremented and evaluated whenever the tracepoint
is triggered (whenever execution reaches line 12).

DBG> DEFI NE/ VALUE COUNT=0
DBG> SET TRACE/ SI LENT %.1 NE 12 DO (DEF/ VAL COUNT=COUNT+1; EVAL COUNT)

Source lines are displayed by default at breakpoints, tracepoints, and watchpoints if they are available for the
module being debugged. You can also control their display with the SET STEP [NO]JSOURCE command and
the /[NOJSOURCE qualifier of the SET BREAK, SET TRACE, and SET WATCH commands. See Chapter 6,
Controlling the Display of Source Code for information about how to control the display of source code in general
and in particular at breakpoints, tracepoints, and watchpoints.

3.3.5. Setting Breakpoints or Tracepoints on
Exceptions

The SET BREAK /EXCEPTION and SET TRACE /EXCEPTION commands direct the debugger to treat any
exception generated by your program as a breakpoint or tracepoint, respectively. The breakpoint or tracepoint
occurs before any application-declared exception handler is invoked. See Section 14.5, “Debugging Exceptions
and Condition Handlers” for debugging techniques associated with exceptions and condition handlers.

3.3.6. Setting Breakpoints or Tracepoints on Events

The SET BREAK and SET TRACE commands each have an /EVENT= event - nane qualifier. You can
use this qualifier to set breakpoints or tracepoints that are triggered by various events (denoted by event-name
keywords).Events and their keywords are currently defined for the following event facilities:

* ADA event facility, which defines HPE Ada tasking events. ADA events are defined in Section 16.6.4,
“Monitoring Task Events”.

« THREADS event facility, which defines tasking (multithread) events for programs written in any language that
uses POSIX Threads services. Threads events are defined in Section 16.6.4, “Monitoring Task Events”.

The appropriate facility and event-name keywords are defined when the program is brought under debugger
control. Use the SHOW EVENT_FACILITY command to identify the current event facility and the associated
event-name keywords. The SET EVENT_FACILITY command enables you to change the event facility and

VSI Confidential, NDA Required 57

Controlling and Monitoring
Program Execution

change your debugging context. This is useful if you have a multilanguage program and want to debug a routine
that is associated with an event facility but that facility is not currently set.

The following example shows how to set a SCAN event breakpoint. It causes the debugger to break whenever a
SCAN token is built, for any value:

DBG> SET BREAK/ EVENT=TCOKEN

When a breakpoint or tracepoint is triggered, the debugger identifies the event that caused it to be triggered and
gives additional information.

3.3.7. Deactivating, Activating, and Canceling
Breakpoints or Tracepoints

After a breakpoint or tracepoint is set, you can deactivate it, activate it, or cancel it.

To deactivate a breakpoint or tracepoint, enter the DEACTIVATE BREAK or DEACTIVATE TRACE
command. This causes the debugger to ignore the breakpoint or tracepoint during program execution. However,
you can activate it at a later time, for example, when you rerun the program (see Section 1.3.3, “Rerunning the
Same Program from the Kept Debugger™). A deactivated breakpoint or tracepoint is listed as such in a SHOW
BREAK display.

To activate a breakpoint or tracepoint, use the ACTIVATE BREAK or ACTIVATE TRACE command.
Activating a breakpoint or tracepoint causes it to take effect during program execution.

The commands DEACTIVATE BREAK/ALL and ACTIVATE BREAK/ALL (or DEACTIVATE TRACE/
ALL and ACTIVATE TRACE/ALL) operate on all breakpoints or tracepoints and are particularly useful when
rerunning a program with the RERUN command.

To cancel a breakpoint or tracepoint, use the CANCEL BREAK or CANCEL TRACE command. A canceled
breakpoint or tracepoint is no longer listed in a SHOW BREAK or SHOW TRACE display.

When using any of these commands, specify the address expression and qualifiers (if any) exactly as you did when
setting the breakpoint or tracepoint. For example:

DBG> DEACTI VATE TRACE/ LI NE
DBG> CANCEL BREAK SWAP, MOD2\ LOOP4, 2753

3.4. Monitoring Changes in Variables and
Other Program Locations

The SET WATCH command enables you to specify program variables (or arbitrary memory locations) that the
debugger monitors as your program executes. This process is called setting watchpoints. If, during execution,
the program modifies the value of a watched variable (or memory location), the watchpoint is triggered. The
debugger then suspends execution, displays information, and prompts for more commands. The debugger monitors
watchpoints continuously during program execution.

This section describes the general use of the SET WATCH command. Section 3.4.3, “Watching Nonstatic
Variables” gives additional information about setting watch points on nonstatic variables - variables that are
allocated on the call stack or in registers.

Note

In some cases, when using the SET WATCH command with a variable name (or any other symbolic address
expression), you might need to set a module or specify a scope or a path name. Those concepts are described in
Chapter 5, Controlling Access to Symbols in Your Program. The examples in this section assume that all modules
are set and that all variable names are uniquely defined.

58 VSI Confidential, NDA Required

Controlling and Monitoring
Program Execution

If your program was optimized during compilation, certain variables in the program might be removed by the
compiler. If you then try to set a watchpoint on such a variable, the debugger issues a warning (see Section 1.2,
“Preparing an Executable Image for Debugging” and Section 14.1, “Debugging Optimized Code”).

The syntax of the SET WATCH command is as follows:

SET WATCHJ[/qual i fi er [...]] addr ess- expressi on]...]
[WHEN (condi ti onal - expr essi on)]

[DO (conmand [...])]

You can specify any valid address expression, but usually you specify the name of a variable. The following
example shows a typical use of the SET WATCH command and shows the general default behavior of the debugger
at a watchpoint:

DBG> SET WATCH COUNT
DBG GO
#
wat ch of MOD2\ COUNT at MOD2\ %.| NE 24
24: COUNT : = COUNT + 1;
ol d val ue: 27
new val ue: 28
break at MOD2\ %.1 NE 25
25: END;
DBG>

In this example, the SET WATCH command sets a watchpoint on the variable COUNT, and the GO command
starts execution. When the program changes the value of COUNT, execution is paused. The debugger then does
the following:

* Announces the event ("watch of MOD2 \COUNT ..."), identifying the location of the instruction that changed
the value of the watched variable ("... at MOD2 \%LINE 24")

» Displays the associated source line (24)
 Displays the old and new values of the variable (27 and 28)

* Announces that execution is paused at the beginning of the next line ("break at MOD2 \%LINE 25")and displays
that source line

* Prompts for another command

When the address of the instruction that modified a watched variable is not at the beginning of a source line, the
debugger denotes the instruction's location by displaying the line number plus the byte offset from the beginning
of the line. For example:

DBG> SET WATCH K
DBG> GO
#
wat ch of TEST\K at TEST\%.| NE 1945
19: DO 40 K =1, J
old value: 4
new val ue: 5
break at TEST\%.I NE 19+9
19: DO 40 K =1, J
DBG>

In this example, the address of the instruction that modified variable K is 5 bytes beyond the beginning of line 19.
The breakpoint is on the instruction that follows the instruction that modified the variable (not on the beginning
of the next source line as in the preceding example).

VSI Confidential, NDA Required 59

Controlling and Monitoring
Program Execution

You can set watchpoints on aggregates (that is, entire arrays or records).A watchpoint set on an array or record
triggers if any element of the array or record changes. Thus, you do not need to set watchpoints on individual
array elements or record components. However, you cannot set an aggregate watchpoint on a variant record. In
the following example, the watchpoint is triggered because element 3 of array ARR was modified:

DBG> SET WATCH ARR

DBG> GO
#
wat ch of SUBR\ ARR at SUBR\ %.| NE 12
12: ARR (3) := 28
ol d val ue:
(1): 7
(2): 12
(3): 3
(4): 0
new val ue:
(1): 7
(2): 12
(3): 28
(4): 0
break at SUBR\ %.|1 NE 13
DBG>

You can also set a watchpoint on a record component, on an individual array element, or on an array slice (a
range of array elements). A watchpoint set on an array slice triggers if any element within that slice changes.
When setting the watchpoint, use the syntax of the current language. For example, the following command sets a
watchpoint on element 7 of array CHECK using Pascal syntax:

DBG> SET WATCH CHECK] 7]

To identify all of the watchpoints that are currently set, use the SHOW WATCH command.

3.4.1. Deactivating, Activating, and Canceling
Watchpoints

After a watchpoint is set, you can deactivate it, activate it, or cancel it.

To deactivate a watchpoint, use the DEACTIVATE WATCH command. This causes the debugger to ignore the
watchpoint during program execution. However, you can activate it at a later time, for example, when you rerun the
program (see Section 1.3.3, “Rerunning the Same Program from the Kept Debugger”). A deactivated watchpoint
is listed as such in a SHOW WATCH display.

To activate a watchpoint, use the ACTIVATE WATCH command. Activating a watchpoint causes it to take
effect during program execution. You can always activate a static watchpoint, but the debugger cancels a nonstatic
watchpoint if execution moves out of the scope in which the variable is defined (see Section 3.4.3, “Watching
Nonstatic Variables”).

The commands DEACTIVATE WATCH/ALL and ACTIVATE WATCH/ALLoperate on all watchpoint sand
are particularly useful when rerunning a program with the RERUN command.

To cancel a watchpoint, use the CANCEL WATCH command. A canceled watchpoint is no longer listed in a
SHOW WATCH display.

3.4.2. Watchpoint Options

The SET WATCH command provides the same options for controlling the behavior of the debugger at watchpoints
that the SET BREAK and SET TRACE commands provide for breakpoints and tracepoints - namely the /AFTER,
/[NO]SILENT, /[NO]JSOURCE, and /TEMPORARY qualifiers, and the optional WHEN and DO clauses. See
Section 3.3.4, “Controlling Debugger Action at Breakpoints or Tracepoints” for examples.

60 VSI Confidential, NDA Required

Controlling and Monitoring
Program Execution

3.4.3. Watching Nonstatic Variables

Note

The generic term nonstatic variable is used here to denote what is called an automatic variable in some languages.

Storage for a variable in your program is allocated either statically or nonstatically. A static variable is associated
with the same memory address throughout execution of the program. A nonstatic variable is allocated on the call
stack or in a register and has a value only when its defining routine is active on the call stack. As explained in
this section, the technique for setting a watchpoint, the watchpoint's behavior, and the speed of program execution
are different for the two kinds of variables.

To determine how a variable is allocated, use the EVALUATE /ADDRESS command. A static variable generally
has its address in PO space (0 to 3FFFFFFF, hexadecimal). A nonstatic variable generally has its address in P1 space
(40000000 to 7FFFFFFF, hexadecimal) or is in a register. In the following Pascal code example, X is declared as a
static variable, but Y is a nonstatic variable (by default). The EVALUATE /ADDRESS command, entered while
debugging, shows that X is allocated at memory location 512, but Y is allocated in register RO.

#
VAR
X [STATIC] | NTEGER,
Y: | NTEGER
#
DBG> EVALUATE/ ADDRESS X
512
DBG> EVALUATE/ ADDRESS Y
%R0
DBG>

When using the SET WATCH command, note the following distinction. You can set a watchpoint on a static
variable throughout execution of your program, but you can set a watchpoint on a nonstatic variable only when
execution is paused within the scope of the variable's defining routine. Otherwise, the debugger issues a warning.
For example:

DBG> SET WATCH Y

YDEBUG W SYMNOTACT, nonstatic variable ' MOD4\ ROUT3\ Y
is not active

DBG>

Section 3.4.3.2, “Setting a Watchpoint on a Nonstatic Variable” describes how to set a watchpoint on a nonstatic
variable.

3.4.3.1. Execution Speed

When a watchpoint is set, the speed of program execution depends on whether the variable is static or nonstatic.
To watch a static variable, the debugger write-protects the page containing the variable. If your program attempts
to write to that page (modify the value of that variable), an access violation occurs and the debugger handles the
exception. The debugger temporarily unprotects the page to allow the instruction to complete and then determines
whether the watched variable was modified. Except when writing to that page, the program executes at full speed.

Because problems arise if the call stack or registers are write-protected, the debugger must use another technique
to watch a nonstatic variable. It traces every instruction in the variable's defining routine and checks the value of
the variable after each instruction has been executed. Because this significantly slows down the execution of the
program, the debugger issues the following message when you set a nonstatic watchpoint:

DBG> SET WATCH Y
YEBUG- | - WPTTRACE, nonstatic watchpoint, tracing every instruction
DBG>

VSI Confidential, NDA Required 61

Controlling and Monitoring
Program Execution

3.4.3.2. Setting a Watchpoint on a Nonstatic Variable

To set a watchpoint on a nonstatic variable, make sure that execution is paused within the defining routine. A
convenient technique is to set a tracepoint on the routine that includes a DO clause to set the watchpoint. Thus,
whenever the routine is called, the tracepoint is triggered and the watchpoint is automatically set on the local
variable. In the following example, the WPTTRACE message indicates that a watchpoint has been set on Y, a
nonstatic variable that is local to routine ROUT3:

DBG> SET TRACE/ NOSOURCE ROUT3 DO (SET WATCH YY)

DBG> GO

#

trace at routine MOD4\ ROUT3

YOEBUG | - WPTTRACE, nonstatic watchpoint, tracing every instruction
#

wat ch of MOD4\ ROUT3\'Y at MOD4\ ROUT3\ %1 NE 16

16: Y =4
ol d val ue: 3
new val ue: 4
break at MOD4\ ROUT3\ %.I NE 17
17: SWAP (X, Y);
DBG>

When execution returns to the caller of routine ROUTS3, variable Y is no longer active. Therefore, the debugger
automatically cancels the watchpoint and issues the following messages:

YOEBUG | - WATCHVAR, wat ched vari abl e MOD4\ ROUT3\'Y has gone out of scope
YOEBUG | - WATCHCAN, wat chpoi nt now cancel ed

3.4.3.3. Options for Watching Nonstatic Variables

The SET WATCH command qualifiers /OVER, /INTO, and /[NO]STATIC provide options for watching
nonstatic variables.

When you set a watchpoint on a nonstatic variable, you can direct the debugger to do one of two things at a routine
call:

 Step over the called routine - executing it at full speed - and resume instruction tracing after returning. This is
the default (SET WATCH /OVER).

* Trace instructions within the called routine, which monitors the variable instruction-by-instruction within the
routine (SET WATCH /INTO).

Using the SET WATCH /OVER command results in better performance. However, if the called routine modifies
the watched variable, the watchpoint is triggered only after execution returns from that routine. The SET WATCH /
INTO command slows down program execution but enables you to monitor watchpoints more precisely within
called routines.

The debugger determines whether a variable is static or nonstatic by looking at its address (PO space, P1 space,
or register). When entering a SET WATCH command, you can override this decision with the /[NO]STATIC
qualifier. For example, if you have allocated nonstack storage in P1 space, use the SET WATCH /STATIC
command to specify that a particular variable is static even though it is in P1 space. Conversely, if you have
allocated your own call stack in PO space, use the SET WATCH /NOSTATIC command to specify that a particular
variable is nonstatic even though it is in PO space.

3.4.3.4. Setting Watchpoints in Installed Writable Shareable
Images

When setting a watchpoint in an installed writable shareable image, use the SET WATCH /NOSTATIC command
(see Section 3.4.3.3, “Options for Watching Nonstatic Variables”).

62 VSI Confidential, NDA Required

Controlling and Monitoring
Program Execution

The reason you must set a nonstatic watchpoint is as follows. Variables declared in such shareable images
are typically static variables. By default, the debugger watches a static variable by write-protecting the page
containing that variable. However, the debugger cannot write-protect a page in an installed writable shareable
image. Therefore, the debugger must use the slower method of detecting changes, as for nonstatic variables - that
is, by checking the value at the watched location after each instruction has been executed (see Section 3.4.3.1,
“Execution Speed”).

If any other process modifies the watched location's value, the debugger may report that your program modified
the watched location.

VSI Confidential, NDA Required 63

Controlling and Monitoring
Program Execution

64

VSI Confidential, NDA Required

Examining and
Manipulating Program Data

Chapter 4. Examining and
Manipulating Program Data

This chapter explains how to use the EXAMINE and DEPOSIT commands to display and modify the values of
symbols declared in your program as well as the contents of arbitrary program locations. The chapter also explains
how to use the EVALUATE and other commands that evaluate language expressions.

The topics covered in this chapter are organized as follows:
* General concepts related to using the EXAMINE, DEPOSIT, and EVALUATE commands.

» Use of the commands with symbolic names - for example, the names of variables and routines declared in your
program. Such symbolic address expressions are associated with compiler generated types.

 Use of the commands with program locations (memory addresses or registers) that do not have symbolic names.
Such address expressions are not associated with compiler generated types.

» Specifying a type to override the type associated with an address expression.

The examples in this chapter do not cover all language-dependent behavior. When debugging in any language, be
sure also to consult the following documentation:

» Section 14.3, “Debugging Multilanguage Programs”, which highlights some important language differences
that you should be aware of when debugging multilanguage programs.

» The debugger's online help (type HELP Language).

» The documentation supplied with that language.

4.1. General Concepts

This section introduces the EXAMINE, DEPOSIT, and EVALUATE commands and discusses concepts that are
common to those commands.

4.1.1. Accessing Variables While Debugging

Note

The generic term nonstatic variable is used here to denote what is called an automatic variable in some languages.

Before you try to examine or deposit into a nonstatic (stack-local or register) variable, its defining routine must be
active on the call stack. That is, program execution must be paused somewhere within the defining routine. See
Section 3.4.3, “Watching Nonstatic Variables” for more information about nonstatic variables.

You can examine a static variable at any time during program execution, and you can examine a nonstatic variable
as soon as execution reaches its defining routine. However, before you examine any variable, you should execute
the program beyond the point where the variable is declared and initialized. The value contained in any uninitialized
variable should be considered invalid.

Many compilers optimize code to make the program run faster. If the code that you are debugging has been
optimized, some program locations might not match what you would expect from looking at the source code. In
particular, some optimization techniques eliminate certain variables so that you no longer have access to them
while debugging.

Section 14.1, “Debugging Optimized Code” explains the effect of several optimization techniques on the
executable code. When first debugging a program, it is best to disable optimization, if possible, with the /
NOOPTIMIZE (or equivalent) compiler command qualifier.

VSI Confidential, NDA Required 65

Examining and
Manipulating Program Data

In some cases, when using the EXAMINE or DEPOSIT command with a variable name (or any other symbolic
address expression) you might need to set a module or specify a scope or a path name. Those concepts are described
in Chapter 5, Controlling Access to Symbols in Your Program. The examples in this chapter assume that all modules
are set and that all variable names are uniquely defined.

4.1.2. Using the EXAMINE Command

For high-level language programs, the EXAMINE command is used mostly to display the current value of
variables, and it has the following syntax:

EXAM NE addr ess- expression]...]
For example, the following command displays the current value of the integer variable X:

DBG>EXAM NE X
MOD3\ X: 17
DBG>

When displaying the value, the debugger prefixes the variable name with its path name - in this case, the name of
the module where variable X is declared (see Section 5.3.2, “Using SHOW SYMBOL and Path Names to Specify
Symbols Uniquely™).

The EXAMINE command usually displays the current value of the entity, denoted by an address expression, in
the type associated with that location (for example, integer, real, array, record, and so on).

When you enter an EXAMINE command, the debugger evaluates the address expression to yield a program
location (a memory address or a register). The debugger then displays the value stored at that location as follows:

 If the location has a symbolic name, the debugger formats the value according to the compiler-generated type
associated with that symbol.

* If the location does not have a symbolic name, the debugger formats the value in the type longword integer
by default.

See Section 4.1.5, “Address Expressions and Their Associated Types” for more information about the types
associated with symbolic and nonsymbolic address expressions.

By default, when displaying the value, the debugger identifies the address expression and its path name
symbolically if symbol information is available. See Section 4.1.11, “Obtaining and Symbolizing Memory
Addresses” for more information about symbolizing addresses.

The debugger can directly examine a wchar _t variable:

DBG> EXAM NE wi de_buffer
TST\mai n\wi de_buffer[0:31]: '"test data line 1................ '

OpenVMS Debugger on Integrity servers displays general, floating point and predicate registers as if the register
rename base (CFM.rrb) and rotating size (CFM.sor) are both zero. In other words, when rotating registers are in
use, the effects of the rotation are ignored.

Note

This is a rare condition that occurs only in unusual circumstances in C++ and assembly language programs; most
programs are not affected by this problem.

In this condition, you must examine the CFM register and manually adjust the EXAMINE command to account
for the non-zero CFM.rrb and CFM.sor fields.

4.1.3. Using the DUMP Command

66 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

Use the debugger command DUMP to display the contents of memory, in a manner similar to that of the DCL
command DUMP, in one of the following formats:

Binary

Byte

Decimal
Hexadecimal
Longword (default)
Octal

Quadword

Word

The DUMP command has the following syntax:
DUMP addr ess- expressi onl[: addr ess-expressi on2]

The default for addr ess- expr essi on2 isaddr ess- expr essi onl. For example, the following command
displays the current value of registers R16 through R25 in quadword format.

DBG>DUMP/ QUADWORD R16: R25

0000000000000078 0000000000030038 8.......) G %16
000000202020786B 0000000000030041 A....... kx ... U8
0000000000030140 0000000000007800 . X...... @...... %20
0000000000010038 0000000000000007 8....... %22
0000000000000006 0000000000000000 w24
DBG>

You can use the command DUMP to display registers, variables, and arrays. The debugger makes no attempt to
interpret the structure of arrays. The following qualifiers determine how the debugger displays output from the
DUMP command:

Qualifier Formats Output As

/ Bl NARY Binary integers

/| BYTE One-byte integers

/ DECI MAL Decimal integers

| HEXADECI MAL Hexadecimal integers

/ LONGWORD Longword integers (length 4 bytes)
/ OCTAL Octal integers

/ QUADWORD Quadword integers (length 8 bytes)
/ WORD Word integers (length 2 bytes)

By default, the debugger displays examined entities that do not have a compiler-generated type as longwords.

4.1.4. Using the DEPOSIT Command

For high-level languages, the DEPOSIT command is used mostly to assign anew value to a variable. The command
is similar to an assignment statement inmost programming languages, and has the following syntax:

DEPCSI T addr ess- expressi on = | anguage- expressi on
For example, the following DEPOSIT command assigns the value 23 to the integer variable X:

DBG>EXAM NE X
MOD3\ X: 17
DBGDEPOSI T X = 23

VSI Confidential, NDA Required 67

Examining and
Manipulating Program Data

DBG>EXAM NE X
MOD3\ X: 23
DBG>

The DEPOSIT command usually evaluates a language expression and deposits the resulting value into a program
location denoted by an address expression.

When you enter a DEPOSIT command, the debugger does the following:
* It evaluates the address expression to yield a program location.

 If the program location has a symbolic name, the debugger associates the location with the symbol's compiler
generated type. If the location does not have a symbolic name, the debugger associates the location with the
type longword integer by default (see Section 4.1.5, “Address Expressions and Their Associated Types”).

* It evaluates the language expression in the syntax of the current language and in the current radix to yield a
value. This behavior is identical to that of the EVALUATE command (see Section 4.1.6, “Evaluating Language
Expressions™).

* It checks that the value and type of the language expression is consistent with the type of the address expression.
If you try to deposit a value that is incompatible with the type of the address expression, the debugger issues
a diagnostic message. If the value is compatible, the debugger deposits the value into the location denoted by
the address expression.

Note that the debugger might do type conversion during a deposit operation if the language rules allow it. For
example, assume X is an integer variable. In the following example, the real value 2.0 is converted to the integer
value 2, which is then assigned to X:

DBGDEPCSIT X = 2.0
DBG>EXAM NE X

MOD3\ X: 2

DBG>

In general, the debugger tries to follow the assignment rules for the current language.

4.1.5. Address Expressions and Their Associated
Types

The symbols that are declared in your program (variable names, routine names, and so on) are symbolic address
expressions. They denote memory addresses or registers. Symbolic address expressions (also called symbolic
names in this chapter) have compiler-generated types, and the debugger knows the type and location that are
associated with symbolic names. Section 4.1.11, “Obtaining and Symbolizing Memory Addresses” explains how
to obtain memory addresses and register names from symbolic names and how to symbolize program locations.

Symbolic names include the following categories:
* Variables

The associated program locations contain the current values of variables. Techniques for examining and
depositing into variables are described in Section 4.2, “Examining and Depositing into Variables”.

¢ Routines, labels, and line numbers

The associated program locations contain instructions. Techniques for examining and depositing instructions
are described in Section 4.3, “Examining and Depositing Instructions”.

Program locations that do not have a symbolic name are not associated with a compiler-generated type. To enable
you to examine and deposit into such locations, the debugger associates them with the default type longword
integer. If you specify a location that does not have a symbolic name, the EXAMINE command displays the

68 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

contents of four bytes starting at the address specified and formats the displayed information as an integer value.
In the following example, the memory address 926 is not associated with a symbolic name (note that the address
is not symbolized when the EXAMINE command is executed). Therefore, the EXAMINE command displays the
value at that address as a longword integer.

DBG>EXAM NE 926
926: 749404624
DBG>

By default you can deposit up to four bytes of integer data into a program location that does not have a symbolic
name. This data is formatted as a longword integer. For example:

DBG>DEPCSI T 926 = 84
DBGEXAM NE 926

926: 84

DBG>

Techniques for examining and depositing into locations that do not have a symbolic name are described in
Section 4.5, “Specifying a Type When Examining and Depositing”.

The EXAMINE and DEPOSIT commands accept type qualifiers (/ASCII: n, /BYTE, and so on) that enable
you to override the type associated with a program location. This is useful either if you want the contents of the
location to be interpreted and displayed in another type, or if you want to deposit some value of a particular type
into a location that is associated with another type. Techniques for overriding a type are described in Section 4.5,
“Specifying a Type When Examining and Depositing”.

4.1.6. Evaluating Language Expressions

A language expression consists of any combination of one or more symbols, literals, and operators that is evaluated
to a single value in the syntax of the current language and in the current radix. (The current language and current
radix are defined in Section 4.1.9, “Language Dependencies and the Current Language” and Section 4.1.10,
“Specifying a Radix for Entering or Displaying Integer Data”, respectively.) Several debugger commands and
constructs evaluate language expressions:

* The EVALUATE and DEPOSIT commands, which are described in this section and in Section 4.1.4, “Using
the DEPOSIT Command”, respectively

* The IF, FOR, REPEAT, and WHILE commands (see Section 13.6, “Using Control Structures to Enter
Commands”)

* WHEN clauses, which are used with the SET BREAK, SET TRACE, and SET WATCH commands (see
Section 3.3.4, “Controlling Debugger Action at Breakpoints or Tracepoints™)

This discussion applies to all commands and constructs that evaluate language expressions, but it focuses on using
the EVALUATE command.

The EVALUATE command evaluates one or more language expressions in the syntax of the current language and
in the current radix and displays the resulting values. The command has the following syntax:

EVALUATE | anguage- expression|...]

One use of the EVALUATE command is to perform arithmetic calculations that might be unrelated to your
program. For example:

DBG>EVALUATE (8+12) *6/ 4
30
DBG>

The debugger uses the rules of operator precedence of the current language when evaluating language expressions.

VSI Confidential, NDA Required 69

Examining and
Manipulating Program Data

You can also evaluate language expressions that include variables and other constructs. For example, the following
EVALUATE command subtracts 3 from the current value of the integer variable X, multiplies the result by 4,
and displays the resulting value:

DBG>DEPOSI T X = 23
DBG>EVALUATE (X - 3) * 4
80

DBG>

However, you cannot evaluate a language expression that includes a function call. For example, if PRODUCT
is a function that multiplies two integers, you cannot enter the EVALUATE PRODUCT (3, 5) command. If your
program assigns the returned value of a function to a variable, you can examine the resulting value of that variable.

If an expression contains symbols with different compiler generated types, the debugger uses the type-conversion
rules of the current language to evaluate the expression. If the types are incompatible, a diagnostic message is
issued. Debugger support for operators and other constructs in language expressions is listed in the debugger's
online help for each language (type HELP Language).

The built-in symbol %CURVAL denotes the current value - the value last displayed by an EVALUATE or
EXAMINE command or deposited by aDEPOSIT command. The backslash (\) also denotes the current value
when used in that context. For example:

DBG>EXAM NE X

MOD3\ X: 23
DBG>EVALUATE %CURVAL
23

DBGDEPOSI T Y = 47
DBG>EVALUATE \

47

DBG>

4.1.6.1. Using Variables in Language Expressions

You can use variables in language expressions in much the same way that you use them in the source code of
your program.

Thus, the debugger generally interprets a variable used in a language expression as the current value of that variable,
not the address of the variable. For example (X is an integer variable):

DBG>DEPOSI T X = 12 I Assign the value 12 to X

DBG>EXAM NE X I Display the value of X

MOD4\ X: 12

DBG>EVALUATE X I Eval uate and display the value of X

12

DBG>EVALUATE X + 4 I Add the value of X to 4.

16

DBG>DEPCSI T X = X/ 2 I Divide the value of X by 2 and assign
I the resulting value to X

DBG>EXAM NE X I Display the new val ue of X

MODA4\ X: 6

DBG>

Using a variable in a language expression as shown in the previous examples is generally limited to single-valued,
non composite variables. Typically, you can specify a multivalued, composite variable (like an array or record) in
a language expression only if the syntax indicates that you are referencing only a single value (a single element of
the aggregate). For example, if ARR is the name of an array of integers, the following command is invalid:

DBG> EVALUATE ARR
YDEBUG W NOVALUE, reference does not have a val ue
DBG>

70 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

However, the following commands are valid because only a single element of the array is referenced:

DBG>EVALUATE ARR(2) I Evaluate element 2 of array ARR
37

DBG>DEPCSI T K = 5 + ARR(2) I Deposit the sum of two integer
DBG> I values into an integer variable.

If the current language is BLISS, the debugger interprets a variable in a language expression as the address of that
variable. To denote the value stored in a variable, you must use the contents-of operator (period (.). For example,
when the language is set to BLISS:

DBG>EXAM NE Y I Display the value of Y.
MOD4A\Y: 3

DBG>EVALUATE Y I Display the address of Y.
02475B

DBG>EVALUATE .Y I Display the value of Y.

3

DBG>EVALUATE Y + 4 I Add 4 to the address of Y and
02475F I display the resulting val ue.
DBG>EVALUATE .Y + 4 I Add 4 to the value of Y and display
7 I the resulting val ue.

DBG>

For all languages, to obtain the address of a variable, use the EVALUATE /ADDRESS command as described
in Section 4.1.11, “Obtaining and Symbolizing Memory Addresses”. The EVALUATE and EVALUATE /
ADDRESS commands both display the address of an address expression when the language is set to BLISS.

4.1.6.2. Numeric Type Conversion by the Debugger

When evaluating language expressions involving numeric types of different precision, the debugger first converts
lower-precision types to higher-precision types before performing the evaluation. In the following example, the
debugger converts the integer 1 to the real 1.0 before doing the addition:

DBG>EVALUATE 1.5 + 1
2.5
DBG>

The basic rules are as follows:
 Ifinteger and real types are mixed, the integer type is converted to the real type.

» If integer types of different sizes are mixed (for example, byte-integer and word-integer), the one with the
smaller size is converted to the larger size.

» If real types of different sizes are mixed (for example, S float and T float), the one with the smaller size is
converted to the larger size.

In general, the debugger allows more numeric type conversion than the programming language. In addition, the
hardware type used for a debugger calculation (word, longword, S_float, and so on) might differ from that chosen
by the compiler. Because the debugger is not as strongly typed or as precise as some languages, the evaluation of
an expression by the EVALUATE command might differ from the result that would be calculated by compiler-
generated code and obtained with the EXAMINE command.

4.1.7. Address Expressions Compared to Language
Expressions

Do not confuse address expressions with language expressions. An address expression specifies a program
location; a language expression specifies a value. In particular, the EXAMINE command expects an address

VSI Confidential, NDA Required 71

Examining and
Manipulating Program Data

expression as its parameter, and the EVALUATE command expects a language expression as its parameter. These
points are shown in the next examples.

In the following example, the value 12 is deposited into the variable X. This is confirmed by the EXAMINE
command. The EVALUATE command computes and displays the sum of the current value of X and the integer
literal 6:

DBGDEPCSI T X = 12
DBG>EXAM NE X

MOD3\ X: 12
DBGEVALUATE X + 6
18

DBG>

In the next example, the EXAMINE command displays the value currently stored at the memory location that is
6 bytes beyond the address of X:

DBGEXAM NE X + 6
MOD3\ X+6: 274903
DBG>

In this case the location is not associated with a compiler-generated type. Therefore, the debugger interprets and
displays the value stored at that location in the type longword integer (see Section 4.1.5, “Address Expressions
and Their Associated Types”).

In the next example, the value of X + 6 (that is, 18) is deposited into the location that is 6 bytes beyond the address
of X. This is confirmed by the last EXAMINE command.

DBG>EXAM NE X

MOD3\ X: 12
DBGDEPOSIT X + 6 = X + 6
DBG>EXAM NE X

MOD3\ X: 12

DBGEXAM NE X + 6

MOD3\ X+6: 18

DBG>

4.1.8. Specifying the Current, Previous, and Next Entity

When using the EXAMINE and DEPOSIT commands, you can use three special built-in symbols (address
expressions) to refer quickly to the current, previous, and next data locations (logical entities). These are the period
(.), the circumflex ("), and the Return key.

The period (.), when used by itself with an EXAMINE or DEPOSIT command, denotes the current entity - that
is, the program location most recently referenced by an EXAMINE or DEPOSIT command. For example:

DBGEXAM NE X
SIZE\X: 7
DBGDEPOSI T . = 12
DBG>EXAM NE .

SIZE\ X: 12

DBG>

The circumflex (*) and Return key denote, respectively, the previous and next logical data locations relative to
the last EXAMINE or DEPOSIT command (the logical predecessor and successor, respectively). The circumflex
and Return key are useful for referring to consecutive indexed components of an array. The following example
shows the use of these operators with an array of integers, ARR:

DBG>EXAM NE ARR(5) | Exami ne elenent 5 of array ARR MAIN
\ ARR(5): 448670

72 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

DBG>EXAM NE ~ I Exam ne the previous elenment (4).MAIN
\ARR(4): 792802

DBG>EXAM NE I Exam ne the next element (5).MAIN

\ ARR(5): 448670

DBG>EXAM NE I Exam ne the next element (6).MAIN
\ARR(6): 891236

DBG>

The debugger uses the type associated with the current entity to determine logical successors and predecessors.

You can also use the built-in symbols %CURLOC, %PREVLOC, and %NEXTLOC to achieve the same purpose
as the period, circumflex, and Return key, respectively. These symbols are useful in command procedures and
also if your program uses the circumflex for other purposes. Moreover, using the Return key to signify the
logical successor does not apply to all contexts. For example, you cannot press the Return key after entering
the DEPOSIT command to indicate the next location, but you can always use the symbol %NEXTLOC for that

purpose.

Note that, like EXAMINE and DEPOSIT, the EVALUATE /ADDRESS command also resets the values of
the current, previous, and next logical-entity built-in symbols (see Section 4.1.11, “Obtaining and Symbolizing
Memory Addresses”). However, you cannot press the Return key after entering the EVALUATE /ADDRESS
command to indicate the next location. For more information about debugger built-in symbols, see Appendix B,
Built-In Symbols and Logical Names.

The previous examples show the use of the built-in symbols after referencing a symbolic name with the EXAMINE
or DEPOSIT command. If you examine or deposit into a memory address, that location might or might not be

associated with a compiler-generated type. When you reference a memory address, the debugger uses the following
conventions to determine logical predecessors and successors:

* Ifthe address has a symbolic name (the name of a variable, component of a composite variable, routine, and so
on), the debugger uses the associated compiler-generated type.

* If the address does not have a symbolic name, the debugger uses the type longword integer by default.

As the current entity is reset with new examine or deposit operations, the debugger associates each new location
with a type in the manner indicated to determine logical successors and predecessors. This is shown in the following
examples.

Assume that a Fortran program has declared three variables, ARY, FLT, and BTE, as follows:

* ARY is an array of three word integers (2 bytes each)

* FLTisan F_floating type (4 bytes)

* BTE is a byte integer (1 byte)

Assume that storage for these variables has been allocated at consecutive addresses in memory, starting with 1000.
For example:

1000: ARY(1)
1002: ARY(2)
1004: ARY(3)
1006: FLT

1010: BTE

1011: undefi ned
#

Examining successive logical data locations will give the following results:

DBG>EXAM NE 1000 I Exam ne ARY(1l), associated with 1000
MOD3\ ARY(1): 13 I Current entity is now ARY(1).

VSI Confidential, NDA Required 73

Examining and
Manipulating Program Data

DBG>EXAM NE Exam ne next |ocation, ARY(2),
MOD3\ ARY(2) : 7 using type of ARY(1l) as reference.
DBG>EXAM NE Exam ne next |ocation, ARY(3).
MOD3\ ARY(3): 19 Current entity is now ARY(3).
DBG>EXAM NE Exam ne entity at 1006 (FLT).

!
I
!
!
!
MOD3\ FLT: 1.9117807E+07 ! Current entity is now FLT.
!
!
!
I
!

DBG>EXAM NE Exam ne entity at 1010 (BTE).

MOD3\ BTE: 43 Current entity is now BTE.
DBG>EXAM NE Exam ne entity at 1011 (undefi ned).
1011: 17694732 Interpret data as |ongword integer.
DBG> Location is not synbolized.

The same principles apply when you use type qualifiers with the EXAMINE and DEPOSIT commands (see
Section 4.5.2, “Overriding the Current Type”). The type specified by the qualifier determines the data boundary
of an entity and, therefore, any logical successors and predecessors.

4.1.9. Language Dependencies and the Current
Language

The debugger enables you to set your debugging context to any of several supported languages. The setting
of the current language determines how the debugger parses and interprets the names, numbers, operators, and
expressions you specify in debugger commands, and how it displays data.

By default, the current language is the language of the module containing the main program, and it is identified
when you bring the program under debugger control. For example:

$ PASCAL/ NOOPTI M ZE/ DEBUG TEST1
$ LI NK/ DEBUG TEST1
$ DEBUG KEEP
Debugger Banner and Versi on Number
DBG>RUN TEST1
Language: PASCAL, Mbdul e: TEST1
DBG>

When debugging modules whose code is written in other languages, you can use the SET LANGUAGE command
to establish a new language-dependent context. Section 14.3, “Debugging Multilanguage Programs” highlights
some important language differences. Debugger support for operators and other constructs in language expressions
is listed for each language in the debugger's online help (type HELP Language).

4.1.10. Specifying a Radix for Entering or Displaying
Integer Data

The debugger can interpret and display integer data in any one of four radixes: decimal, hexadecimal, octal, and
binary. The default radix is decimal for most languages.

On Alpha processors, the exceptions are BLISS, MACRO--32 and MACRO--64, which have a default radix of
hexadecimal.

You can control the radix for the following kinds of integer data:
» Data that you specify in address expressions or language expressions
» Data that is displayed by the EVALUATE and EXAMINE commands

You cannot control the radix for other kinds of integer data. For example, addresses are always displayed in
hexadecimal radix ina SHOW CALLS display. Or, when specifying an integer n with various command qualifiers
(/AFTER: n, /UP: n, and so on), you must use decimal radix.

74 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

The technique you use to control radix depends on your objective. To establish a new radix for all subsequent
commands, use the SET RADIX command. For example:

DBG>SET RADI X HEXADECI MAL

After this command is executed, all integer data that you enter in address or language expressions is interpreted
as being hexadecimal. Also, all integer data displayed by the EVALUATE and EXAMINE commands is given
in hexadecimal radix.

The SHOW RADIX command identifies the current radix (which is either the default radix, or the radix last
established by a SET RADIX command). For example:

DBG>SHOW RADI X

i nput radi x: hexadeci mal
out put radi x: hexadeci nal
DBG>

The SHOW RADIX command identifies both the input radix (for data entry) and the output radix (for data
display). The SET RADIX command qualifiers /INPUT and /OUTPUT enable you to specify different radixes
for data entry and display. For more information, see the SET RADIX command.

Use the CANCEL RADIX command to restore the default radix.

The examples that follow show several techniques for displaying or entering integer data in another radix without
changing the current radix.

To convert some integer data to another radix without changing the current radix, use the EVALUATE command
with a radix qualifier (/BINARY, /DECIMAL, /HEXADECIMAL, /OCTAL). For example:

DBG>SHOW RADI X

i nput radi x: deci mal
out put radi x: deci nmal
DBG>EVALUATE 18 + 5

23 I 23 is decimal integer.
DBG>EVALUATE/ HEX 18 + 5

00000017 I 17 is hexadeci nal integer.
DBG>

The radix qualifiers do not affect the radix for data entry.

To display the current value of an integer variable (or the contents of a program location that has an integer type)
in another radix, use the EXAMINE command with a radix qualifier. For example:

DBG>EXAM NE X

MOD4\ X: 4398 I 4398 is a decinmal integer.
DBG>EXAM NE/ OCTAL . I Xis the current entity.
MOD4\ X: 00000010456 I 10456 is an octal integer.
DBG>

To enter one or more integer literals in another radix without changing the current radix, use one of the radix built-
in symbols %BIN, %DEC, %HEX, or %OCT. A radix built-in symbol directs the debugger to treat an integer literal
that follows (or all numeric literals in a parenthesized expression that follows) as a binary, decimal, hexadecimal,
or octal number, respectively. These symbols do not affect the radix for data display. For example:

DBG>SHOW RADI X
i nput radi x: decimal
out put radi x: deci nmal

DBG>EVAL %8BI N 10 Eval uate the binary integer 10.

!
2 I 2 is a decinmal integer.
DBG>EVAL %EX (10 + 10) I Eval uate the hexadeci mal integer 20.
32 I 32 is a decimal integer.

VSI Confidential, NDA Required 75

Examining and
Manipulating Program Data

DBG>EVAL %EX 20 + 33 Treat 20 as hexadeci mal, 33 as deci mal.

65 65 is a decimal integer.
DBG>EVAL/ HEX %OCT 4672 Treat 4672 as octal and display in hex.
000009BA 9BA i s a hexadeci mal nunber.

DBGEXAM NE X + Y%OEC 12
MOD3\ X+12: 493847
DBG>DEPCS J = %OCT 7777777

Exam ne the | ocation 12 deci mal bytes
beyond the address of X

!
!
!
!
!
!
I Deposit an octal val ue.
!

DBG>EXAM NE . Di splay that value in decimal radix.
MOD3\J: 2097151

DBG>EXAM NE/ OCTAL . I Display that value in octal radix.
MOD3\ J: 00007777777

DBG>EXAM NE %1EX 0A34D I Exam ne | ocation A34D, hexadeci nmal .

SHARES$LI BRTL+4941: 344938193 ! 344938193 is a deci mal integer.
DBG>

Note

When specifying a hexadecimal integer that starts with a letter rather than a number (for example, A34D in the
last example), add a leading 0. Otherwise, the debugger tries to interpret the integer as a symbol declared in your
program.

For more examples showing the use of the radix built-in symbols, see Appendix B, Built-In Symbols and Logical
Names.

4.1.11. Obtaining and Symbolizing Memory Addresses

Use the EVALUATE /ADDRESS command to determine the memory address or the register name associated
with a symbolic address expression, such as a variable name, line number, routine name, or label. For example:

DBG>EVALUATE/ ADDRESS X I A variable nane
2476

DBG>EVALUATE/ ADDRESS SWAP I Aroutine nane
1536

DBG>EVALUATE/ ADDRESS %.1 NE 26

1629

DBG>

The address is displayed in the current radix (as defined in Section 4.1.10, “Specifying a Radix for Entering or
Displaying Integer Data”). You can specify a radix qualifier to display the address in another radix. For example:

DBG>EVALUATE/ ADDRESS/ HEX X
000009AC
DBG>

If a variable is associated with a register instead of a memory address, the EVALUATE /ADDRESS command
displays the name of the register, regardless of whether a radix qualifier is used. The following command indicates
that variable K (a nonstatic variable) is associated with register R2:

DBG>EVALUATE/ ADDRESS K
92
DBG>

Like the EXAMINE and DEPOSIT commands, EVALUATE /ADDRESS resets the values of the current,
previous, and next logical-entity built-in symbols (see Section 4.1.8, “Specifying the Current, Previous, and Next
Entity”’).Unlike the EVALUATE command, EVALUATE /ADDRESS does not affect the current-value built-in
symbols %CURVAL and backslash (\).

The SYMBOLIZE command does the reverse of EVALUATE /ADDRESS, but without affecting the current,
previous, or next logical-entity built-in symbols.It converts a memory address or a register name into its symbolic

76 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

representation (including its path name) if such a representation is possible (Chapter 5, Controlling Access to
Symbols in Your Program explains how to control symbolization).For example, the following command shows
that variable K is associated with register R2:

DBG>SYMBOLI ZE %2
addr ess MOD3\ %R2: MOD3\ K
DBG>

By default, symbolic mode is in effect (SET MODE SYMBOLIC).Therefore, the debugger displays all addresses
symbolically if symbols are available for the addresses. For example, if you specify a numeric address with the
EXAMINE command, the address is displayed in symbolic form if symbolic information is available:

DBG>EVALUATE/ ADDRESS X

2476

DBG>EXAM NE 2476
MOD3\ X: 16

DBG>

However, if you specify a register that is associated with a variable, the EXAMINE command does not convert
the register name to the variable name. For example:

DBG>EVALUATE/ ADDRESS K
92

DBG-EXAM NE %2

MOD3\ %R2: 78

DBG>

By entering the SET MODE NOSYMBOLIC command, you disable symbolic mode and cause the debugger
to display numeric addresses rather than their symbolic names. When symbolization is disabled, the debugger
might process commands somewhat faster because it does not need to convert numbers to names. The EXAMINE
command has a /[NO]SYMBOLIC qualifier that enables you to control symbolization for a single EXAMINE
command. For example:

DBG>EVALUATE/ ADDRESS Y

512

DBG>EXAM NE 512

MOD3\Y: 28

DBG>EXAM NE/ NOSYMBCLI C 512
512: 28

DBG>

Symbolic mode also affects the display of instructions.
For example, on Integrity servers:

DBG>EXAM NE/ | NSTRUCTI ON . %4°C

HELLO nmai n\ %1 NE 8: add r34=200028, r1
DBG>EXAM NE/ NOSYMBOL/ | NSTRUCTI ON . %4°C

65969: add r34 = 200028, rl
DBG>

4.2. Examining and Depositing into Variables

The examples in this section show how to use the EXAMINE and DEPOSIT commands with variables.

Languages differ in the types of variables they use, the names for these types, and the degree to which different
types can be intermixed in expressions. The following generic types are discussed in this section:

* Scalars (such as integer, real, character, or Boolean)

VSI Confidential, NDA Required 77

Examining and
Manipulating Program Data

* Strings

* Arrays

* Records

* Pointers (access types)

The most important consideration when examining and manipulating variables in high-level language programs
is that the debugger recognizes the names, syntax, type constraints, and scoping rules of the variables in your
program. Therefore, when specifying a variable with the EXAMINE or DEPOSIT command, you use the same
syntax that is used in the source code. The debugger processes and displays the data accordingly. Similarly, when
assigning a value to a variable, the debugger follows the typing rules of the language. It issues a diagnostic message
if you try to deposit an incompatible value. The examples in this section show some of these invalid operations
and the resulting diagnostics.

When using the DEPOSIT command (or any other command), note the following behavior. If the debugger issues
a diagnostic message with a severity level of I (informational), the command is still executed (the deposit is made
in this case). The debugger aborts an illegal command line only when the severity level of the message is W
(warning) or greater.

For additional language-specific information, seethe debugger's online help (type HELP Language).

4.2.1. Scalar Types

The following examples show use of the EXAMINE, DEPOSIT, and EVALUATE commands with some integer,
real, and Boolean types.

Examine a list of three integer variables:

DBG>EXAM NE W DTH, LENGTH, AREA
S| ZE\ W DTH; 4S| ZE

S| ZE\ LENGTH: 7SI ZE

Sl ZE\ AREA: 28

DBG>

Deposit an integer expression:

DBG>DEPOSI T W DTH = CURRENT_W DTH + 10
DBG>

The debugger checks that a value to be assigned is compatible with the data type and dimensional constraints of
the variable. The following example shows an attempt to deposit an out-of-bounds value (X was declared as a
positive integer):

DBGDEPOSIT X = -14
YOEBUG | - | VALOUTBNDS, val ue assigned is out of bounds at or near DEPOSIT
DBG>

If you try to mix numeric types (integer and real of varying precision) in a language expression, the debugger
generally follows the rules of the language. Strongly typed languages do not allow much, if any, mixing. With
some languages, you can deposit a real value into an integer variable. However, the real value is converted into
an integer. For example:

DBG>DEPCSI T | = 12345
DBG>EXAM NE |

MOD3\ | : 12345
DBG>DEPCSI T | = 123. 45
DBG>EXAM NE |

78 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

MOD3\1: 123
DBG>

If numeric types are mixed in an expression, the debugger performs type conversion as discussed in Section 4.1.6.2,
“Numeric Type Conversion by the Debugger”.For example:

DBG>DEPCSI T Y = 2. 356 I Yis of type G floating point.
DBG>EXAM NE Y
MOD3\ Y: 2.35600000000000
DBG>EVALUATE Y + 3
5. 35600000000000
DBG>DEPOSI T R = 5. 35E3 I Ris of type F floating point.
DBG>EXAM NE R
MOD3\ R. 5350. 000
DBG>EVALUATE R*50
267500.0
DBG>DEPOSI T | = 22222
DBG>EVALUATE R/ |
0. 2407524
DBG>

The next example shows some operations with Boolean variables. The values TRUE and FALSE are assigned to
the variables WILLING and ABLE, respectively. The EVALUATE command then obtains the logical conjunction
of these values.

DBG>DEPCSI T W LLI NG = TRUE
DBG>DEPCSI T ABLE = FALSE
DBG>EVALUATE W LLI NG AND ABLE
Fal se

DBG>

4.2.2. ASCII String Types

When displaying an ASCII string value, the debugger encloses it within quotation marks (") or apostrophes ('),
depending on the language syntax. For example:

DBG>EXAM NE EMPLOYEE_NAME
PAYROLL\ EMPLOYEE_NAME: “"Peter C. Lonbardi"
DBG>

To deposit a string value (including a single character) into a string variable, you must enclose the value in quotation
marks (") or apostrophes ('). For example:

DBG>DEPCSI T PART_NUMBER = "WG 7619. 3- 84"
DBG>

If the string has more ASCII characters (1 byte each) than can fit into the location denoted by the address
expression, the debugger truncates the extra characters from the right and issues the following message:

YOEBUG | - | STRTRU, string truncated at or near DEPCSIT

If the string has fewer characters, the debugger pads the remaining characters to the right of the string by inserting
ASCII space characters.

4.2.3. Array Types

You can examine an entire array aggregate, a single indexed element, or a slice (a range of elements). However,
you can deposit into only one element at a time. The following examples show typical operations with arrays.

VSI Confidential, NDA Required 79

Examining and
Manipulating Program Data

The following command displays the values of all the elements of the array variable ARRX, a one-dimensional
array of integers:

DBG>EXAM NE ARRX

MOD3\ ARRX
(1): 42
(2): 17
(3): 278
(4): 56
(5): 113
(6): 149

DBG>

The following command displays the value of element 4 of array ARRX (depending on the language, parentheses
or brackets are used to denote indexed elements):

DBG>EXAM NE ARRX(4)
MOD3\ ARRX(4): 56
DBG>

The following command displays the values of all the elements in a slice of ARRX. This slice consists of the range
of elements from element 2 to element 5:

DBG>EXAM NE ARRX(2: 5)

MOD3\ ARRX
(2): 17
(3): 278
(4): 56
(5): 113
DBG>

In general, a range of values to be examined is denoted by two values separated by a colon (valuel:value2).
Depending on the language, two periods (..) can be used instead of a colon.

You can deposit a value to only a single array element at a time (you cannot deposit to an array slice or an entire
array aggregate with a single DEPOSIT command). For example, the following command deposits the value 53
into element 2 of ARRX:

DBG>DEPOSI T ARRX(2) = 53
DBG>

The following command displays the values of all the elements of array REAL_ARRAY, a two-dimensional array
of real numbers (three per dimension):

DBG>EXAM NE REAL_ARRAY
PROG2\ REAL_ ARRAY

(1, 1): 27. 01000

(1, 2): 31. 00000

(1, 3): 12. 48000

(2, 1): 15. 08000

(2, 2): 22. 30000

(2, 3): 18. 73000
DBG>

The debugger issues a diagnostic message if you try to deposit to an index value that is out of bounds. For example:

DBG>DEPOSI T REAL_ARRAY(1, 4) = 26.13

YEBUG | - SUBOUTBND, subscript 2 is out of bounds, value is 4,
bounds are 1..3

DBG>

80 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

In the previous example, the deposit operation was executed because the diagnostic message is of I level. This
means that the value of some array element adjacent to (1, 3), possibly (2, 1) might have been affected by the out-
of-bounds deposit operation.

To deposit the same value to several components of an array, you can use a looping command such as FOR or
REPEAT. For example, assign the value RED to elements 1 to 4 of the array COLOR_ARRAY:

DBG-FOR | = 1 TO 4 DO (DEPCSI T COLOR ARRAY(1) = RED)
DBG>

You can also use the built-in symbols (.) and (“)to step through array elements, as explained in Section 4.1.8,
“Specifying the Current, Previous, and Next Entity”.

4.2.4. Record Types

Note

The generic term record is used here to denote a data structure whose elements have heterogeneous data types -
what is called a St r uct type in the C language.

You can examine an entire record aggregate, a single record component, or several components. However, you
can deposit into only one component at a time. The following examples show typical operations with records.

The following command displays the values of all the components of the record variable PART:

DBG>EXAM NE PART
| NVENTORY\ PART:

| TEM "WE- 1247"
PRI CE: 49. 95
IN_STOCK: 24

DBG>

The following command displays the value of component IN_STOCK of record PART (general syntax):

DBG>EXAM NE PART. | N_STOCK
| NVENTORY\ PART. | N_STOCK: 24
DBG>

The following command displays the value of the same record component using COBOL syntax (the language
must be set to COBOL):

DBG>EXAM NE | N_STOCK OF PART
| NVENTOR\ | N_STOCK of PART: | N_STOCK: 24
DBG>

The following command displays the values of two components of record PART:

DBG>EXAM NE PART. | TEM PART. I N_STOCK

| NVENTORY\ PART. | TEM "WE-1247"
| NVENTORY\ PART. | N_STOCK: 24
DBG>

The following command deposits a value into record component IN STOCK:

DBG>DEPOSI T PART. I N_STCCK = 17
DBG>

4.2.5. Pointer (Access) Types

VSI Confidential, NDA Required 81

Examining and
Manipulating Program Data

You can examine the entity designated (pointed to) by a pointer variable and deposit a value into that entity. You
can also examine a pointer variable.

For example, the following Pascal code declares a pointer variable A that designates a value of type real:

#
TYPE
T = "REAL;
VAR
A: T,
#

The following command displays the value of the entity designated by the pointer variable A:

DBG-EXAM NE A®
MOD3\ AN 1.7
DBG>

In the following example, the value 3.9 is deposited into the entity designated by A:

DBG>DEPCSI T A* = 3.9
DBG-EXAM NE A*

MOD3\ AM: 3.9

DBG>

When you specify the name of a pointer variable with the EXAMINE command, the debugger displays the memory
address of the object it designates. For example:

DBG>EXAM NE/ HEXADECI MAL A
SAMPLE\ A: 0000B2A4
DBG>

4.3. Examining and Depositing Instructions

The debugger recognizes address expressions that are associated with instructions. This enables you to examine
and deposit instructions using the same basic techniques as with variables.

When debugging at the instruction level, you might find it convenient to first enter the following command. It sets
the default step mode to stepping by instruction:

DBG>SET STEP | NSTRUCTI ON
DBG>

There are other step modes that enable you to execute the program to specific kinds of instructions. You can also
set breakpoints to interrupt execution at these instructions.

In addition, you can use a screen-mode instruction display (see Section 7.4.4, “Predefined Instruction Display
(INST)”) to display the actual decoded instruction stream of your program.

4.3.1. Examining Instructions

If you specify an address expression that is associated with an instruction in an EXAMINE command (for example,
a line number), the debugger displays the first instruction at that location. You can then use the period (.), Return
key, and circumflex (*) to display the current, next, and previous instruction (logical entity), as described in
Section 4.1.8, “Specifying the Current, Previous, and Next Entity”.

For example, on Alpha processors:

DBGCEXAM NE %.1 NE 12

82 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

MOD3\ %I NE 12: Bl S R31, R31, R2

DBG>EXAM NE

MOD3\ %I NE 12+4: Bl S R31, R2, RO ! Next instruction
DBG>EXAM NE

MOD3\ %1 NE 12+8: ADDL R31, RO, RO | Next instruction
DBG>EXAM NE ~

MOD3\ %1 NE 12+4: BI S R31, R2, RO ! Previous instruction
DBG>

Line numbers, routine names, and labels are symbolic address expressions that are associated with instructions.
In addition, instructions might be stored in various other memory addresses and in certain registers during the
execution of your program.

The program counter (PC) is the register that contains the address of the next instruction to be executed by your
program. The command EXAMINE .%PC displays that instruction. The period (.), when used directly in front
of an address expression, denotes the contents of operator - that is, the contents of the location designated by the
address expression. Note the following distinction:

* EXAMINE %PC displays the current PC value, namely the address of the next instruction to be executed.

* EXAMINE .%PC displays the contents of that address, namely the next instruction to be executed by the
program.

As shown in the previous examples, the debugger knows whether an address expression is associated with
an instruction. If it is, the EXAMINE command displays that instruction (you do not need to use the /
INSTRUCTION qualifier). You use the INSTRUCTION qualifier to display the contents of an arbitrary program
location as an instruction - that is, the command EXAMINE /INSTRUCTION causes the debugger to interpret
and format the contents of any program location as an instruction (see Section 4.5.2, “Overriding the Current

Type”).

When you examine consecutive instructions in a MACRO-32 program, the debugger might misinterpret data as
instructions if storage for the data is allocated in the middle of a stream of instructions. The following example
shows this problem. It shows some MACRO-32 code with two longwords of data storage allocated directly after
the BRB instruction at line 7 (line numbers have been added to the example for clarity).

nmodul e TEST

1: . TITLE TEST

2.

3: TEST$START: :

4. . WORD 0

5:

6: MOVL #2, R2

7: BRB LABEL 2

8:

9: .LONG ~X12345
10: .LONG ~X14465
11:

12: LABEL 2:

13: MOVL #5, RS

14.

15: . END TESTSSTART

The following EXAMINE command displays the instruction at the start of line 6:

DBG>EXAM NE %.1 NE 6
TEST\ TEST$START\ %.1 NE 6: MOVL SM#02, R2
DBG>

The following EXAMINE command correctly interprets and displays the logical successor entity as an instruction
at line 7:

VSI Confidential, NDA Required 83

Examining and
Manipulating Program Data

DBG>EXAM NE
TEST\ TEST$START\ %.I NE 7: BRB TEST\ TEST$START\ LABEL_2
DBG>

However, the following three EXAMINE commands incorrectly interpret the three logical successors as
instructions:

DBG>EXAM NE

TEST\ TEST$START\ %1 NE 7+2: MILF3 SM#11. 00000, SM#0.5625000, SM#0.5000000

DBG>EXAM NE

YOEBUG- W ADDRESSMODE, i nstruction uses illegal or undefined addressing
nodes

TEST\ TEST$START\ %.1 NE 7+6: MJLD3 SM#0. 5625000[R4], S™#0. 5000000,
@Y 5505(RO)

DBG>EXAM NE

TESTSSTART+12: HALT

DBG>

4.4. Examining and Depositing into Registers

The EXAMINE command displays contents of any register that is accessible in your program. You can use the
DEPOSIT command to change the contents of these registers. The number and type of registers vary for each
OpenVMS platform, as described in the following sections.

4.4.1. Examining and Depositing into Alpha Registers
On Alpha processors, the Alpha architecture provides 32 general (integer) registers and 32 floating-point registers,
some of which are used for temporary address and data storage. Table 4.1, “Debugger Symbols for Alpha
Registers” identifies the debugger built-in symbols that refer to Alpha registers.

Table 4.1. Debugger Symbols for Alpha Registers

Symbol Description
Alpha Integer Registers
%R0 ...%R28 Registers RO ...R28
%FP (%R29) Stack frame base register (FP)
%SP (%R30) Stack pointer (SP)
%R31 ReadAsZero/Sink (RZ)
%PC Program counter (PC)
%PS Processor status register (PS). The built-in symbols

%PSL and %PSW are disabled for Alpha processors.
Alpha Floating-Point Registers

%FO0 ...%F30 Registers FO ...F30
%F31 ReadAsZero/Sink
On Alpha processors:

* You can omit the percent sign (%) prefix if your program has not declared a symbol with the same name.
* You cannot deposit a value into register R30.
* You cannot deposit a value into registers R31 or F31. They are permanently assigned the value 0.

* There are no vector registers.

84 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

The following examples show how to examine and deposit into registers:

DBG>SHOW TYPE I Show type for |ocations without
type: long integer I a conpil er-generated type.
DBG>SHOW RADI X I Identify current radix.

i nput radi x: decimal

out put radi x: deci nmal

DBG>EXAM NE 9%R11 | Display value in R11.

MOD3\ %4R11: 1024

DBG>DEPCSI T %11 = 444 | Deposit new value into R11.
DBG>EXAM NE %11 I Check new val ue.

R11: 444

DBG>EXAM NE %PC I Display value in program counter.
MOD\ 9%°C. 1553

DBG>EXAM NE %GP I Display value in stack pointer.
O\ ¥8P: 2147278720

DBG>

See Section 4.3.1, “Examining Instructions” for specific information about the PC.

Processor Status (Alpha Only)

On Alpha processors, the processor status (PS) is a register whose value represents a number of processor state
variables. The first three bits of the PS are reserved for the use of the software. The values of these bits can be
controlled by a user program. The remainder of the bits, bits 4 to 64, contain privileged information and cannot
be altered by a user-mode program.

The following example shows how to examine the contents of the PS:

DBGEXAM NE %°S
MOD1\ %°S:
SP_ALIGNIPL VMM CM |P SW
48 0 0 USER 0 3
DBG>

See the Alpha Architecture Reference Manual for complete information about the PS, including the values of the
various bits.

You can also display the information in the PS in other formats. For example:

DBG>EXAM NE/ LONG HEX %S

MOD1\ %°S: 0000001B

DBG>EXAM NE/ LONG BI N %S

MOD1\ %°S: 00000000 00000000 00000000 00011011
DBG>

The command EXAMINE /PS displays the value at any location in PS format. This is useful for examining the
combined current and saved PS values.

4.4.2. Examining and Depositing into Integrity server
Registers

On Integrity server processors, the Integrity server architecture provides:
* Up to 128 64-bit general registers
» Up to 128 82-bit floating-point registers (the debugger allows you to treat these as full octawords),

» Up to 64 1-bit predicate, 8 64-bit branch, and 128 (only 20 are accessible/used) application registers

VSI Confidential, NDA Required 85

Examining and
Manipulating Program Data

+ Special registers (for example, %PC) and virtual registers (for example, “%oRETURN _PC)
Most of these registers are read/writable from user mode debug. Some, however, are not writable and others

are only accessible from the higher privileges related with the System Code Debugger (SCD) configuration (see
OpenVMS Alpha System AnalysisTools Manual).

Table 4.2. Debugger Symbols for Integrity server Registers

Symbol Description
Integrity server Application Registers
%KRO ...%KR7 Kernel registers 0 ...7
%RSC (%AR16) Register Stack Configuration
%BSP (%AR17) Backing Store Pointer
%BSPSTORE (%ARI18) Backing Store Pointer for Memory Stores
%RNAT (%AR19) RSE NaT Collection
%CCV ($AR32) Compare and Exchange Compare Value
%UNAT (%AR36) User NaT Collection
%FPSR (%ARA40) Floating-point Status
%PFS (%AR64) Previous Function State
%LC (%AR65) Loop Count
%EC (%AR66) Epilog Count
%CSD Code Segment
%SSD Stack Segment
Control Registers
%DCR (%CRO) Default Control
%ITM (%CR1) Interval Timer Match (only visible for SCD)
%IVA (%CR2) Interruption Vector Address (only visible for SCD)
%PTA (%CRS8) Page Table Address (only visible for SCD)
%PSR (%CR9, %ISPR) Interruption Processor Status
%ISR (%CR17) Interruption Status
%IIP (%CR19) Interruption Instruction Pointer
%IFA (%CR20) Interruption Faulting Address
%ITIR (%CR21) Interruption TLB Insertion
%IIPA (%CR22) Interruption Instruction Previous
%IFS (%CR23) Interruption Function State
%IIM (%CR24) Interruption Immediate
%IHA (%CR25) Interruption Hash Address
%LID (%CR64) Local Interrupt ID (only visible for SCD)
%TPR (%CR66) Task Priority (only visible for SCD)
%IRRO ...%IRR3 (%CR68 ...%CR71) External Interrupt Request 0 ...3 (only visible for
SCD)
%ITV (%CR72) Interval Timer (only visible for SCD)
%PMV (%CR73) Performance Monitoring (only visible for SCD)
%CMCYV (%CR74) Corrected Machine Check Vector (only visible for
SCD)

86 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

Symbol Description
%IRRO and %IRR1 (%CR80 and %CRS81) Local Redirection 0:1 (only visible for SCD)
Special Registers
%IH (%SRO0) Invocation Handle
%PREV_BSP Previous Backing Store Pointer
%PC (%IP) Program Counter (Instruction Pointer | slot number)
%RETURN_PC Return Program Counter
%CFM Current Frame Marker
%NEXT PFS Next Previous Frame State
%PSP Previous Stack Pointer
%CHFCTX ADDR Condition Handling Facility Context Address
%0OSSD Operating System Specific Data
%HANDLER FV Handler Function Value
%LSDA Language Specific Data Area
% UM User Mask
Predicate Registers
%PR (%PRED) Predicate Collection Register -- Collection of %PO ...

%P63

%P0 ...%P63

Predicate (single-bit)Registers 0 ...63

Branch Registers

%RP (%B0)

Return Pointer

%B1 ...%B7

Branch Registers 1 ...7

General Integer Registers

%R0

General Integer Register 0

%GP (%R1)

Global Data Pointer

%R2 ...%R11

General Integer Registers 2 ...11

%SP (%R12) Stack Pointer

%TP (%R13) Thread Pointer

%R14 ...%R24 General Integer Registers 14 ...24
%AP (%R25) Argument Information

%R26 ...%R127

General Integer Registers 26 ...127

Output Registers

%O0UTO ...%0UT7

Output Registers, runtime aliases (i.e., If the frame has
allocated output registers, then %OUTO0 maps to the
first allocated output registers, for example, %R38,
etc.)

General Registers

%GRNATO and %GRNAT1

General Register Not A Thing (NAT) collection
registers 64 bits each, for example, %GRNAT0 <3,
1, 0> isthe NAT bit for %R3.

Floating Point Registers

%F0 ...%F127

Floating Point Registers 0 ...127

On Integrity server processors:

VSI Confidential, NDA Required

87

Examining and
Manipulating Program Data

* You can omit the percent sign (%) prefix if your program has not declared a symbol with the same name.

* You cannot deposit values into the following kinds of registers: unallocated, disabled, or unreadable registers.
For example:

* %R38 to %R 127, if only %R32 to %R37 were allocated
* %F0 (always 0.0)
* %F1 (always 1.0)
* %R0 (always 0)
* %SP
* %P0 (always 1)
* %GRNATO and %GRNAT1
+ All of the special registers, except %PC
* Most of the control and application registers (see below)
* For regular user mode debug and SCD, you can also deposit into registers, as follows:
+ Control registers %IPSR, %ISR, %IIP, %IFA, %ITIR, %IIPA, %IFS, %IIM, and %IHA for exception frames
+ Application registers %RSC and %CCV
* For SCD ONLY, you can also deposit into registers, as follows:
* Application registers %KRO to %KR7

+ Control registers %DCR, %ITM, %IVA, %PTA, %LID, %TPR, %IRRO0 to %IRR3, %ITV, %PMV, %CMCYV,
%LRRO, and %LRR1

* There are no vector registers.

» Some register reads are automatically formatted. You can override this formatting, as shown in Section 4.4.1,
“Examining and Depositing into Alpha Registers”(for example, EXAMINE/QUAD/HEX %FPSR).

* For information on the Floating Point Status Register (%FPSR), see the Intel I14-64 Architecture Software
Developer's Manual Volume 1. Example:

DBG> ex 9% psr
LOOPER\ nai n\ %4-PSR:

I UOZ DV TD RC PC WRE FTZ
SF3 000000 1 0 3 0 O
SF2 000000 1 0 3 0 O
SF1 000000 1 0 3 1 0
SFOoOo000O0OO0 O O 3 0 O
TRAPS I D UD OD ZD DD VD
111 1 1 1
DBG>

You can also force this formatting on any location (see EXAMINE /FPSR).

* For information about Previous Function State (%PFS), Current Frame Maker (%CFM), Interrupt Function
State (%IFS), and Next Previous Function State (%NEXT PFS) registers, see Intel [4-64 Architecture Software
Developer's Manual, Volume 1. Example:

DBG> ex Y%f s

88 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

LOOPER\ mai n\ %PFS:
PPL PEC SOF SOL SCR RRB_GR RRB FR RRB PR
3 0 29 21 0 0 0 0
DBG> ex %fm
LOOPER\ mai n\ %CFM
SOF SOL SOR RRB_GR RRB_FR RRB PR
6 5 0 0 0 0
DBG> ex % fs
LOOPER\ mai n\ % FS:
SOF SOL SOR RRB_GR RRB_FR RRB PR
6 5 0 0 0 0
DBG> ex Y%mext _pfs
LOOPER\ mai n\ %NEXT_PFS:
PPL PEC SOF SOL SCR RRB_GR RRB FR RRB PR
3 0 6 5 0 0 0 0
DBG>

Also see EXAMINE /PFS and EXAMINE /CFM.

* For information about the Process Status Register (%PSR), see the Intel [4-64 Architecture Software Developer's
Manual, Volume 2. Example:

DBG> ex Y%psr
LOOPER\ mai n\ PSR

IABNEDR SSDDDAIDIT MCISCPL RT TB LP DB SI DI PP SP DFH DFL
o1 o o oo oo1 oo 31 00O0O0O01o0 0 o0 o
DT PK | IC MFH MFL AC UP BE
1 0 1 1 1 1 0 0 ODB&

Also see EXAMINE /PSR.

* The debugger defaults to a bit vector format for the %GRNATO0, %GRANT1, and %PR registers. For example:

DBG> ex %grnat0, %pr

LOCPER\ mai n\ %GRNATO:

111211111 11211121 121111111 11000000 00000000 00000000 00000000 00000000
LOCPER\ mai n\ %°R:

00000000 00000000 00000000 00000000 11111111 01010110 10010110 10100011
DBG>

» The debugger defaults to single bits for registers %p0 ...%p63. For example:

DBG> ex %6, Y%7

LOOPER\ mai n\ %P6:
0

LOOPER\ mai n\ %P7:
1

DBG>

4.5. Specifying a Type When Examining and
Depositing

The preceding sections explain how to use the EXAMINE and DEPOSITcommands with program locations that
have a symbolic name and, therefore, are associated with a compiler-generated type.

Section 4.5.1, “Defining a Type for Locations Without a Symbolic Name” describes how the debugger formats
(types) data for program locations that do not have a symbolic name and explains how you can control the type
for those locations.

VSI Confidential, NDA Required 89

Examining and
Manipulating Program Data

Section 4.5.2, “Overriding the Current Type” explains how to override the type associated with any program
location, including a location that has a symbolic name.

4.5.1. Defining a Type for Locations Without a
Symbolic Name

Program locations that do not have a symbolic name and, therefore, are not associated with a compiler-generated
type have the type longword integer by default. Section 4.1.5, “Address Expressions and Their Associated Types”
explains how to examine and deposit into such locations using the default type.

The SET TYPE command enables you to change the default type in order to examine and display the contents of
a location in another type, or to deposit a value of one type into a location associated with another type. Table 4.3,
“SET TYPE Keywords” lists the type keywords for the SET TYPE command.

Table 4.3. SET TYPE Keywords

ASCIC D _FLOAT PACKED
ASCID DATE_TIME INSTRUCTION QUADWORD
ASCII: n EXTENDED FLOAT! |LONG FLOAT ' S _FLOAT '
ASCIW F_LOAT LONG LONG FLOAT ! |T FLOAT'!
ASCIZ FLOAT LONGWORD TYPE=(t ype-
expr essi on)
BYTE G_FLOAT OCTAWORD WORD
X_FLOAT !

Untegrity server and Alpha specific

For example, the following commands set the type for locations without a symbolic name to, respectively, byte
integer, G_floating, and ASCII with 6 bytes of ASCII data. Each successive SET TYPE command resets the type.

DBG>SET TYPE BYTE
DBG>SET TYPE G _FLOAT
DBG>SET TYPE ASCI|: 6

Note that the SET TYPE command, when used without the /OVERRIDE qualifier, does not affect the type for
program locations that have a symbolic name (locations associated with a compiler-generated type).

The SHOW TYPE command identifies the current type for locations without a symbolic name. To restore the
default type for such locations, enter the SET TYPE LONGWORD command.

4.5.2. Overriding the Current Type

The SET TYPE /OVERRIDE command enables you to change the type associated with any program location,
including locations with compiler-generated types. For example, after the following command is executed, an
unqualified EXAMINE command displays the contents of only the first byte of the location specified and interprets
the contents as byte integer data. An unqualified DEPOSIT command modifies only the first byte of the location
specified and formats the data deposited as byte integer data.

DBG>SET TYPE/ OVERRI DE BYTE
See Table 4.3, “SET TYPE Keywords” for the valid type keywords for the SET TYPE /OVERRIDE command.

To identify the current override type, enter the SHOW TYPE /OVERRIDE command. To cancel the current
override type and restore the normal interpretation of locations that have a symbolic name, enter the CANCEL
TYPE /OVERRIDE command.

The EXAMINE and DEPOSIT commands have qualifiers that enable you to override the type currently associated
with a program location for the duration of the EXAMINE or DEPOSIT command. These qualifiers override

90 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

any previous SET TYPE or SET TYPE/OVERRIDE command as well as any compiler-generated type. See the
DEPOSIT and EXAMINE commands for the type qualifiers available to each command.

When used with a type qualifier, the EXAMINE command displays the entity specified by the address expression
in that type. For example:

DBG>EXAM NE/ BYTE I Type is byte integer
MOD3\ %I NE 15 : -48

DBG>EXAM NE/ WORD I Type is word integer.
MOD3\ %I NE 15 : 464

DBG>EXAM NE/ LONG I Type is longword integer.
MOD3\ %I NE 15 : 749404624

DBG>EXAM NE/ QUAD I Type is quadword i nteger.
MOD3%.I NE 15 : +0130653502894178768

DBG>EXAM NE/ FLOAT I Type is F_floating.
MOD3%.| NE 15 : 1.9117807E- 38

DBG>EXAM NE/ G_FLOAT I Type is G floating.
MOD3%.| NE 15 : 1. 509506018605227E- 300

DBG>EXAM NE/ ASCI | I Type is ASCI| string.
MOD3\ %I NE 15 : ".."

DBG>

When used with a type qualifier, the DEPOSIT command deposits a value of that type into the location specified
by the address expression, which overrides the type associated with the address expression.

The remaining sections provide examples of specifying integer, string, and user-declared types with type qualifiers
and the SET TYPE command.

4.5.2.1. Integer Types

The following examples show the use of the EXAMINE and DEPOSITcommands with integer-type qualifiers
(/BYTE, /WORD, /[LONGWORD). These qualifiers enable you to deposit a value of a particular integer type
into an arbitrary program location.

DBG>SHOW TYPE I Show type for |ocations without

type: long integer I a conpiler-generated type.

DBG>EVALU ADDR . I Current location is 724.

724

DBG-DEPO' BYTE . =1 | Deposit the value 1 into one byte
I of nenory at address 724.

DBG>EXAM . I By default, 4 bytes are exam ned.

724: 1280461057

DBG>EXAM BYTE . I Exam ne one byte only.

724: 1

DBG-DEPO WORD . = 2 | Deposit the value 2 into first two
I bytes (word) of current entity.

DBG>EXAM WORD . | Exam ne a word of the current entity.

724: 2

DBG>DEPQ' LONG 724 = 999 Deposit the value 999 into 4 bytes
(a | ongword) beginning at address 724.
Exam ne 4 bytes (Il ongword)

begi nni ng at address 724.

DBG>EXAM LONG 724
724: 999
DBG>

4.5.2.2. ASCII String Type

The following examples show the use of the EXAMINE and DEPOSIT commands with the /ASCII: n type
qualifier.

VSI Confidential, NDA Required 91

Examining and
Manipulating Program Data

When used with the DEPOSIT command, this qualifier enables you to deposit an ASCII string of length n into
an arbitrary program location. In the example, the location has a symbolic name (I) and, therefore, is associated
with a compiler-generated integer type. The command syntax is as follows:

DEPCSI T/ ASCI | : n address-expression = "ASCI| string of length n"
The default value of n is 4 bytes.

DBG>DEPCSI T | = "abcde" I | has conpiler-generated integer type.
%OEBUG- W I NVNUMBER, invalid nuneric string 'abcde'
So, it cannot deposit string into |.

DBG>DEP/ ASCI | : 5 | = "abcde" /ASCI | qualifier overrides integer
type to deposit 5 bytes of
ASCl | dat a.

DBG>EXAM NE Di splay value of | in conpiler-

MOD3\ | : 1146048327
DBG>EXAM ASCI | : 5
MOD3\I: "abcde"
DBG>

generated integer type.
Di splay value of | as 5-hyte

!
!
!
!
!
!
!
I ASCI| string.

To enter several DEPOSIT /ASCII commands, you can establish an override ASCII type with the SET TYPE/
OVERRIDE command. Subsequent EXAMINE and DEPOSIT commands then have the effect of specifying the
/ASCII qualifier with these commands. For example:

DBG>SET TYPE/ OVER ASCI | : 5 Establish ASCI|1:5 as override type.

|
DBG>DEPCSI T | = "abcde" I Can now deposit 5-byte string into I.
DBG>EXAM NE | I Display value of | as 5-byte
MOD3\I: "abcde" I ASCI| string.
DBG>CANCEL TYPE/ OVERRIDE ! Cancel ASCII| override type.
DBG>EXAM NE | I Display | in conpiler-generated type.
MOD3\I: 1146048327
DBG>

4.5.2.3. User-Declared Types

The following examples show the use of the EXAMINE and DEPOSIT commands with the /TYPE=(nane)
qualifier. The qualifier enables you to specify a user-declared override type when examining or depositing.

For example, assume that a Pascal program contains the following code, which declares the enumeration type
COLOR with the three values RED, GREEN, and BLUE:

#
TYPE

COLOR = (RED, GREEN, BLUE);
#

During the debugging session, the SHOW SYMBOL/TYPE command identifies the type COLOR as it is known
to the debugger:

DBG>SHOW SYMBOL/ TYPE COLOR
data MOD3\ COLCR

enuneration type (COLOR 3 elenents), size: 1 byte
DBG>

The next example displays the value at address 1000, which is not associated with a symbolic name. Therefore,
the value 0 is displayed in the type longword integer, by default.

DBG>EXAM NE 1000
1000: 0
DBG>

92 VSI Confidential, NDA Required

Examining and
Manipulating Program Data

The next example displays the value at address 1000 in the type COLOR. The preceding SHOW SYMBOL /
TYPE command indicates that each enumeration element is stored in 1 byte. Therefore, the debugger converts
the first byte of the longword integer value 0 at address 1000 to the equivalent enumeration value, RED (the first
of the three enumeration values):

DBG>EXAM NE/ TYPE=(COLOR) 1000
1000: RED
DBG>

The following DEPOSIT command deposits the value GREEN into address 1000 with the override type COLOR.
The EXAMINE command displays the value at address 1000 in the default type, longword integer:

DBG>DEPCSI T/ TYPE=(COLOR) 1000 = GREEN
DBG>EXAM NE 1000

1000: 1

DBG>

The following SET TYPE command establishes the type COLOR for locations, such as address 1000, that do not
have a symbolic name. The EXAMINE command now displays the value at 1000 in the type COLOR:

DBG>SET TYPE TYPE=(COLOR)
DBG>EXAM NE 1000

1000: GREEN

DBG>

VSI Confidential, NDA Required 93

Examining and
Manipulating Program Data

94

VSI Confidential, NDA Required

Controlling Access to
Symbols in Your Program

Chapter 5. Controlling Access to
Symbols in Your Program

Symbolic debugging enables you to specify variable names, routine names, and so on, precisely as they appear
in your source code. You do not need to use numeric memory addresses or registers when referring to program
locations.

In addition, you can use symbols in the context that is appropriate for the program and its source language. The
debugger supports the language conventions regarding data types, expressions, scope and visibility of entities,
and so on.

To have full access to the symbols that are associated with your program, you must compile and link the program
using the /DEBUG command qualifier.

Under these conditions, the way in which symbol information is passed from your source program to the debugger
and is processed by the debugger is transparent to you in most cases. However, certain situations might require
some action.

For example, when you try to set a breakpoint on a routine named COUNTER, the debugger might display the
following diagnostic message:

DBG>SET BREAK COUNTER
YDEBUG- E- NOSYMBOL, synbol 'COUNTER is not in the synbol table
DBG>

You must then set the module where COUNTER is defined, as explained in Section 5.2, “Setting and Canceling
Modules”.

The debugger might display the following message if the same symbol X is defined (declared) in more than one
module, routine, or other program unit:

DBG>EXAM NE X
YOEBUG- E- NOUNI QUE, synmbol 'X is not unique
DBG>

You must then resolve the symbol ambiguity, perhaps by specifying a path name for the symbol, as explained in
Section 5.3, “Resolving Symbol Ambiguities”.

This chapter explains how to handle these and other situations related to accessing symbols in your program.
The chapter discusses only the symbols (typically address expressions) that are derived from your source program:

» The names of entities that you have declared in your source code, such as variables, routines, labels, array
elements, or record components

* The names of modules (compilation units) and shareable images that are linked with your program

* Elements that the debugger uses to identify source code - for example, the specifications of source files, and
source line numbers as they appear in a listing file or when the debugger displays source code

The following types of symbols are discussed in other chapters:

» The symbols you create during a debugging session with the DEFINE command are covered in Section 13.4,
“Defining Symbols for Commands, Address Expressions, and Values”.

* The debugger's built-in symbols, such as the period (.) and%PC, are discussed throughout this manual in the
appropriate context and are defined in Appendix B, Built-In Symbols and Logical Names.

VSI Confidential, NDA Required 95

Controlling Access to
Symbols in Your Program

Also, see Section 4.1.11, “Obtaining and Symbolizing Memory Addresses” for information about how to obtain
the memory addresses and register names associated with symbolic address expressions and how to symbolize
program locations.

Note

If your program was optimized during compilation, certain variables in the program might be removed by the
compiler. If you then try to reference such a variable, the debugger issues a warning (see Section 1.2, “Preparing
an Executable Image for Debugging” and Section 14.1, “Debugging Optimized Code”).

Before you try to reference a nonstatic (stack-local or register) variable, its defining routine must be active on the
call stack. That is, program execution must be paused somewhere within the defining routine (see Section 3.4.3,
“Watching Nonstatic Variables™).

5.1. Controlling Symbol Information When
Compiling and Linking

To take full advantage of symbolic debugging, you must compile and link your program with the /DEBUG qualifier
as explained in Section 1.2, “Preparing an Executable Image for Debugging”.

The following sections describe how symbol information is created and passed to the debugger when compiling
and linking.

5.1.1. Compiling

When you compile a source file using the /DEBUG qualifier, the compiler creates symbol records for the debug
symbol table (DST records) and includes them in the object module being created.

DST records provide not only the names of symbols but also all relevant information about their use. For example:
+ Data types, ranges, constraints, and scopes associated with variables

» Parameter names and parameter types associated with functions and procedures

¢ Source-line correlation records, which associate source lines with line numbers and source files

Most compilers allow you to vary the amount of DST information put in an object module by specifying different
options with the /DEBUG qualifier. Table 5.1, “Compiler Options for DST Symbol Information” identifies the
options for most compilers (seethe documentation supplied with your compiler for complete information).

Table 5.1. Compiler Options for DST Symbol Information

Compiler Command Qualifier DST Information in Object Module

/DEBUG ' Full

/DEBUG=TRACEBACK’ Traceback only (module names, routine names, and
line numbers)

/NODEBUG * None

! /DEBUG, /DEBUG=ALL, and /DEBUG=(SYMBOLS, TRACEBACK) are equivalent.
2 IDEBUG=TRACEBACK and DEBUG=(NOSYMBOLS, TRACEBACK) are equivalent.
3 INODEBUG, /DEBUG=NONE, and /DEBUG=(NOSYMBOLS, NOTRACEBACK) are equivalent.

The TRACEBACK option is a default for most compilers. That is, if you omit the /DEBUG qualifier, most
compilers assume /DEBUG=TRACEBACK. The TRACEBACK option enables the trace back condition handler
to translate memory addresses into routine names and line numbers so that it can give a symbolic traceback if a
run-time error has occurred. For example:

96 VSI Confidential, NDA Required

Controlling Access to
Symbols in Your Program

$ RUN FORMS

#

%PAS- F- ERRACCFI L, error in accessing file PAS$SOQUTPUT
%PAS- F- ERROPECRE, error opening/creating file
YRV5-F-FNM error in file nanme

% RACE- F- TRACEBACK, synbolic stack dunp foll ows

nmodul e nane routi ne nane i ne rel PC abs PC
PASSI O BASI C _PAS$CODE 00000192 00001CED
PASSI O BASI C _PAS$CODE 0000054D 000020A8
PASSI O BASI C _PAS$CODE 0000028B 00001DE6
FORNVS FORNVS 59 00000020 000005A1
$

Traceback information is also used by the debugger's SHOW CALLS command.

5.1.2. Local and Global Symbols

DST records contain information about all of the symbols that are defined in your program. These are either local
or global symbols.

Typically, a local symbol is a symbol that is referenced only within the module where it is defined; a global symbol
is a symbol such as a routine name, procedure entry point, or a global data name, that is defined in one module
but referenced in other modules.

A global symbol that is defined in a shareable image and is referenced in another image (for example the main,
executable image of a program) is called a universal symbol. When creating a shareable image, you must explicitly
define any universal symbols as such at link time. See Section 5.4, “Debugging Shareable Images” for information
about universal symbols and shareable images.

Generally, the compiler resolves references to local symbols, and the linker resolves references to global symbols.

The distinction between local and global symbols is discussed in various parts of this chapter in connection with
symbol lookup and with shareable images and universal symbols.

5.1.3. Linking

When you enter the LINK /DEBUG command to link object modules and produce an executable image, the linker
performs several functions that affect debugging:

* It builds a debug symbol table (DST) from the DST records contained in the object modules being linked. The
DST is the primary source of symbol information during a debugging session.

* It resolves references to global symbols and builds a global symbol table (GST). The GST duplicates some of
the global symbol information already contained in the DST, but the GST is used by the debugger for symbol
lookup under certain circumstances.

* It puts the DST and GST in the executable image.

It sets flags in the executable image that cause the image activator to pass control to the debugger when you
enter the DCL command RUN (see Section 1.2, “Preparing an Executable Image for Debugging”).

Section 5.4, “Debugging Shareable Images” explains how to link shareable images for debugging, including how
to define universal symbols (global symbols that are defined within a shareable image and referenced from another
image).

Table 5.2, “Effect of Compiler and Linker on DST and GST Symbol Information” summarizes the level of DST
and GST information passed to the debugger depending on the compiler or LINK command option. The compiler
command qualifier controls the level of DST information passed to the linker. The LINK command qualifier
controls not only how much DST and GST information is passed to the debugger but also whether the program
can be brought under debugger control (see Section 1.2, “Preparing an Executable Image for Debugging”).

VSI Confidential, NDA Required 97

Controlling Access to

Symbols in Your Program

Table 5.2. Effect of Compiler and Linker on DST and GST Symbol Information

Compiler DST Data in Object |LINK Command |DST Data Passed to | GST Data Passed to
Command Module Qualifier 2 Debugger Debugger 3
Qualifier !

/DEBUG Full /DEBUG Full Full
/DEBUG=TRACE |Traceback only /DEBUG Traceback only Full
/NODEBUG None /DEBUG None Full
/DEBUG Full /DSF* Full Full °
/DEBUG=TRACE |Traceback only /DSF * Traceback only Full °
/NODEBUG None /DSF * None Full °
/DEBUG Full /TRACE ¢ Traceback only Full
/DEBUG=TRACE |Traceback only /TRACE Traceback only Full
/NODEBUG None /TRACE None Full
/DEBUG Full /NOTRACE ’

'See Table 5.1, “Compiler Options for DST Symbol Information”for additional information.
2You must also specify the /SHAREABLE qualifier when creating a shareable image (see Section 5.4, “Debugging Shareable Images”).

3GST data includes global symbol information that is resolved at link time. GST data for an executable image includes the names and values
of global routines and global constants. GST data for a shareable image includes universal symbols (see Section 5.1.2, “Local and Global
Symbols” and Section 5.4, “Debugging Shareable Images”).

4Alpha only.
SDBG$I MAGE_DSF_PATH must point to the directory in which the .DSF file resides.
’LINK /TRACEBACK and LINK /NODEBUG are equivalent. This is the default for the LINK command.

"The RUN /DEBUG command allows you to run the debugger, but if you entered the LINK /NOTRACEBACK command you will be unable
to do symbolic debugging.

If you specify /NODEBUG with the compiler command and subsequently link and execute the image, the debugger
issues the following message when the program is brought under debugger control:

YOEBUG- | - NOLOCALS, i mage does not contain |ocal synbols

The previous message, which occurs whether you linked with the TRACEBACK or /DEBUG qualifier, indicates
that no DST has been created for that image. Therefore, you have access only to global symbols contained in
the GST.

If you do not specify /DEBUG with the LINK command, the debugger issues the following message when the
program is brought under debugger control:

YOEBUG- | - NOGLOBALS, sone or all gl obal synmbols not accessible

The previous message indicates that the only global symbol information available during the debugging session
is stored in the DST.

These concepts are discussed in later sections. In particular, see Section 5.4, “Debugging Shareable Images” for
additional information related to debugging shareable images.

5.1.4. Controlling Symbol Information in Debugged
Images

Symbol records occupy space within the executable image. After you debug your program, you might want to link
it again without using the /DEBUG qualifier to make the executable image smaller. This creates an image with
only traceback data in the DST and with a GST.

The LINK /NOTRACEBACK command enables you to secure the contents of an image from users after it
has been debugged. Use this command for images that are to be installed with privileges (see the OpenVMS

98 VSI Confidential, NDA Required

Controlling Access to
Symbols in Your Program

System Manager's Manual and the OpenVMS System Management UtilitiesReference Manual). When you use
the NOTRACEBACK qualifier with the LINK command, no symbolic information (including traceback data)
is passed to the image.

5.1.5. Creating Separate Symbol Files (Alpha Only)

On Alpha systems, you can LINK your program with the /DSF qualifier to create a separate file that contains
symbol information. By default, the symbol file has the same file name as the executable file created by the LINK
utility, and has file type . DSF. For example:

$ CC/ DEBUG NOOPTI M ZE TESTPROGRAM C

$ LI NK/ DSF TESTPROGRAM

$ DEFI NE DBGSI MAGE_DSF_PATH SYS$DI SK: []
$ DEBUG KEEP TESTPROGRAM

This example does the following:

1. Compiles TESTPROGRAM C

2. Creates TESTPROGRAM EXE and TESTPROGRAM DSF

3. Defines logical name DBGSI MAGE_DSF_PATH as the current directory
4. Invokes the kept debugger

This procedure allows you to create smaller executable files and still have global symbol information available
for debugging. Certain applications, such as installed resident files, require that the executable not contain symbol
tables. In addition, . DSF files allow you to deliver executable files without symbol tables to customers, but retain
separate . DSF files for future debugging needs.

Note

For ease of debugging, use the /NOOPTIMIZE qualifier (if possible) when compiling the program. See
Section 14.1, “Debugging Optimized Code” for information about debugging optimized code.

Debugging an executable file that has a separate symbol (. DSF) file requires the following:
* The name of the . DSF file must match the name of the . EXE file being debugged.
* You must define DBGSI MAGE_DSF_PATH to point to the directory that contains the . DSF file.

See the OpenVMS Linker Utility Manual for more information about using the /DSF qualifier.

5.2. Setting and Canceling Modules

You need to set a module if the debugger is unable to locate a symbol that you have specified (for example, a
variable name X) and issues a message as in the following example:

DBG>EXAM NE X
YOEBUG E- NOSYMBOL, synbol 'X is not in the synbol table
DBG>

This section explains module setting, and the conditions under which you might need to set or cancel a module,
using the SET MODULE and CANCEL MODULE commands.

When you compile and link your program using the /DEBUGcommand qualifier, as explained in Section 5.1,
“Controlling Symbol Information When Compiling and Linking”, complete symbol information is passed from
the program's source code to its executable image.

VSI Confidential, NDA Required 99

Controlling Access to
Symbols in Your Program

Symbol information is contained in the debug symbol table (DST) and global symbol table (GST) within the
executable image. The DST contains detailed information about local and global symbols. The GST duplicates
some of the global symbol information contained in the DST.

To facilitate symbol searches, the debugger loads symbol information from the DST and GST into a run-time
symbol table (RST), which is structured for efficient symbol lookup. Unless symbol information is in the RST, the
debugger does not recognize or properly interpret the associated symbol.

Because the RST takes up memory, the debugger loads it dynamically, anticipating what symbols you might want
to reference in the course of program execution. The loading process is called module setting, because all symbol
information for a given module is loaded into the RST at one time.

When your program is brought under debugger control, all GST records are loaded into the RST, because global
symbols must be accessible throughout the debugging session. Also, the debugger sets the module that contains
the main program (the routine specified by the image transfer address, where execution is paused at the start of
a debugging session). You then have access to all global symbols and to any local symbols that should be visible
within the main program.

Subsequently, whenever execution of the program is interrupted, the debugger sets the module that contains
the routine in which execution is paused. (For Ada programs, the debugger also sets any module that is
related by a with-clause or subunit relationship, as explained in the debugger's online help. Type Hel p
Language_Support _Ada.) This enables you to reference the symbols that should be visible at that program
location (in addition to the global symbols). This default mode of operation is called dynamic mode. When setting
a module dynamically, the debugger issues a message such as the following:

%OEBUG- | - DYNMODSET, setting nodul e MOD4

If you try to reference a symbol that is defined in a module that has not been set, the debugger warns you that
the symbol is not in the RST. You must then use the SET MODULE command to set the module containing that
symbol explicitly. For example:

DBG>EXAM NE X

YOEBUG E- NOSYMBOL, synmbol 'X is not in the synbol table
DBG>SET MODULE MOD3

DBG>EXAM NE X

MOD3\ ROUT2\ X: 26

DBG>

The SHOW MODULE command lists the modules of your program and identifies which modules are set.

When a module is set, the debugger automatically allocates memory as needed by the RST. This can eventually
slow down the debugger as more modules are set. If performance becomes a problem, you can use the CANCEL
MODULE command to reduce the number of set modules, which automatically releases memory. Or you can
disable dynamic mode by entering the SET MODE NODYNAMIC command. When dynamic mode is disabled,
the debugger does not set modules automatically. Use the SHOW MODE command to determine whether dynamic
mode is enabled or disabled.

For additional information about module setting specific to Ada programs, seethe debugger's online help (type
Hel p Language_Support _Ada).

Section 5.4, “Debugging Shareable Images” explains how to set images and modules when debugging shareable
images.

5.3. Resolving Symbol Ambiguities

Symbol ambiguities can occur when a symbol (for example, a variable name X)is defined in more than one routine
or other program unit.

In most cases, the debugger resolves symbol ambiguities automatically, by using the scope and visibility rules of
the currently set language and the ordering of routine calls on the call stack, as explained in Section 5.3.1, “Symbol
Lookup Conventions”.

100 VSI Confidential, NDA Required

Controlling Access to
Symbols in Your Program

However, in some cases the debugger might respond as follows when you specify a symbol that is defined multiple
times:

« It might not be able to determine the particular declaration of the symbol that you intended. For example:

DBG>EXAM NE X
YDOEBUG W NOUNI QUE, symbol ' X' is not unique
DBG>

* It might reference the declaration that is visible in the current scope, which may not be the one you want.

To resolve such problems, you must specify a scope where the debugger should search for a particular declaration
of the symbol. In the following example, the pathname COUNTER \X uniquely specifies a particular declaration
of X:

DBG>EXAM NE COUNTER\ X
COUNTER\ X: 14
DBG>

The following sections discuss scope concepts and explain how to resolve symbol ambiguities.

5.3.1. Symbol Lookup Conventions

This section explains how the debugger searches for symbols, resolving most potential symbol ambiguities using
the scope and visibility rules of the programming language and also its own rules. Section 5.3.2, “Using SHOW
SYMBOL and Path Names to Specify Symbols Uniquely” and Section 5.3.3, “Using SET SCOPE to Specify a
Symbol Search Scope” describe supplementary techniques that you can use when necessary.

You can specify symbols in debugger commands by using either a path name or the exact symbol.

If you use a path name, the debugger looks for the symbol in the scope denoted by the pathname prefix (see
Section 5.3.2, “Using SHOW SYMBOL and Path Names to Specify Symbols Uniquely”).

If you do not specify a pathname prefix, by default, the debugger searches the run-time symbol table (RST) as
explained in the following paragraphs (you can modify this default behavior with the SET SCOPE command as
explained in Section 5.3.3, “Using SET SCOPE to Specify a Symbol Search Scope™).

First, the debugger looks for symbols in the PC scope (also known as scope 0), according to the scope and visibility
rules of the currently set language. This means that, typically, the debugger first looks within the block or routine
surrounding the current PC value (where execution is currently paused). If the symbol is not found, the debugger
searches the nesting program unit, then its nesting unit, and so on. The precise manner, which depends on the
language, ensures that the correct declaration of a symbol that is defined multiple times is chosen.

However, you can reference symbols throughout your program, not just those that are visible in the PC scope as
defined by the language. This is necessary so you can set breakpoints in arbitrary areas, examine arbitrary variables,
and so on. Therefore, if the symbol is not visible in the PC scope, the debugger continues searching as follows.

After the PC scope, the debugger searches the scope of the calling routine (if any), then its caller, and so on.
Symbolically, the complete scope search list is denoted (0, 1, 2, ..., n), where 0 denotes the PC scope and n is
the number of calls on the call stack. Within each scope (call frame), the debugger uses the visibility rules of the
language to locate a symbol.

This search list, based on the call stack, enables the debugger to differentiate symbols that are defined multiple
times in a convenient, predictable way.

If the symbol is still not found, the debugger searches the rest of the RST - that is, the other set modules and the
global symbol table (GST). At this point the debugger does not attempt to resolve any symbol ambiguities. Instead,
if more than one occurrence of the symbol is found, the debugger issues a message such as the following:

YOEBUG W NOUNI QUE, synbol 'Y' is not unique

VSI Confidential, NDA Required 101

Controlling Access to
Symbols in Your Program

If you have used a SET SCOPE command to modify the default symbol search behavior, you can restore the
default behavior with the CANCEL SCOPE command.

5.3.2. Using SHOW SYMBOL and Path Names to
Specify Symbols Uniquely

If the debugger indicates that a symbol reference is not unique, use the SHOW SYMBOL command to obtain all
possible path names for that symbol, then specify a path name to reference the symbol uniquely. For example:

DBG>EXAM NE COUNT

YOEBUG W NOUNI QUE, symbol ' COUNT' is not unique
DBG>SHOW SYMBOL COUNT

dat a MOD7\ ROUT3\ BLOCK1\ COUNT

dat a MOD4\ ROUT2\ COUNT

routi ne MOD2\ ROUT1\ ROUT3\ COUNT

DBG>EXAM NE MOD4\ ROUT2\ COUNT

MOD4\ ROUT2\ COUNT: 12

DBG>

The command SHOW SYMBOL COUNT lists all declarations of the symbol COUNT that exist in the RST. The
first two declarations of COUNT are variables (data). The last declaration listed is a routine. Each declaration is
shown with its pathname prefix, which indicates the path (search scope) the debugger must follow to reach that
particular declaration. For example, MOD4 \ROUT2 \COUNT denotes the declaration of the symbol COUNT in
routine ROUT2 of module MODA4.

The pathname format is as follows. The leftmost element of a path name identifies the module containing the
symbol. Moving toward the right, the path name lists the successively nested routines and blocks that lead to the
particular declaration of the symbol (which is the rightmost element).

The debugger always displays symbols with their path names, but you need to use path names in debugger
commands only to resolve an ambiguity.

The debugger looks up line numbers like any other symbols you specify (by default, it first looks in the module
where execution is paused). A common use of path names is for specifying a line number in an arbitrary module.
For example:

DBG>SET BREAK QUEUE_NMANAGER\ %.1 NE 26

The SHOW SYMBOL command identifies global symbols twice, because global symbols are included both in
the DST and in the GST. For example:

DBG>SHOW SYMBOL X

dat a ALPHA\ X I global X

dat a ALPHA\ BETA\ X I local X

data X (gl obal) I sanme as ALPHA\ X
DBG>

In the case of a shareable image, its global symbols are universal symbols and the SHOW SYMBOL command
identifies universal symbols twice (see Section 5.1.2, “Local and Global Symbols” and Section 5.4, “Debugging
Shareable Images”).

5.3.2.1. Simplifying Path Names
Path names are often long. You can simplify the process of specifying pathnames in three ways:
» Abbreviate a path name

* Define a brief symbol for a path name

102 VSI Confidential, NDA Required

Controlling Access to
Symbols in Your Program

» Set a new search scope so you do not have to use a path name

To abbreviate a path name, delete the names of nesting program units starting from the left, but leave enough of the
path name to specify it uniquely. For example, ROUT3 \COUNT is a valid abbreviated pathname for the routine
in the first example of Section 5.3.2, “Using SHOW SYMBOL and Path Names to Specify Symbols Uniquely”.

To define a symbol for a path name, use the DEFINE command. For example:

DBG>DEFI NE | NTX = | NT_STACK\ CHECK\ X
DBG>EXAM NE | NTX

To set a new search scope, use the SET SCOPE command, which is described in Section 5.3.3, “Using SET
SCOPE to Specify a Symbol Search Scope”.

5.3.2.2. Specifying Symbols in Routines on the Call Stack

You can use a numeric path name to specify the scope associated with a routine on the call stack (as identified in
a SHOW CALLS display). The pathname prefix "0 \ " denotes the PC scope, the pathname prefix "1 \ " denotes
scope 1 (the scope of the caller routine), and so on.

For example, the following commands display the current values of two distinct declarations of Y, which are visible
in scope 0 and scope 2, respectively:

DBG>EXAM NE 0O\'Y
DBG>EXAM NE 2

By default, the EXAMINE Y command signifies EXAMINE 0 \Y.

See the SET SCOPE/CURRENT command description in Section 5.3.3, “Using SET SCOPE to Specify a Symbol
Search Scope”. That command enables you to reset the reference for the default scope search list relative to the
call stack.

5.3.2.3. Specifying Global Symbols

To specify a global symbol uniquely, use a backslash (\) as a prefix to the symbol. For example, the following
command displays the value of the global symbol X:

DBG>EXAM NE \ X

5.3.2.4. Specifying Routine Invocations

When a routine is called recursively, you might need to distinguish among several calls to the same routine, all
of which generate new symbols with identical names.

You can include an invocation number in a path name to indicate a particular call to a routine. The number must
be a non negative integer and must follow the name of the rightmost routine in the path name. A 0 denotes the
most recent invocation; 1 denotes the previous invocation, and so on. For example, if PROG calls COMPUTE and
COMPUTE calls itself recursively, and each call creates a new variable SUM, the following command displays
the value of SUM for the most recent call to COMPUTE:

DBG>EXAM NE PROG COMPUTE 0\ SUM

To refer to the variable SUM that was generated in the previous call to COMPUTE, express the path name with
a 1 in place of the 0.

When you do not include an invocation number, the debugger assumes that the reference is to the most recent call
to the routine (the default invocation number is 0).

See the SET SCOPE/CURRENT command description in Section 5.3.3, “Using SET SCOPE to Specify a Symbol
Search Scope”. That command enables you to reset the reference for the default scope search list relative to the
call stack.

VSI Confidential, NDA Required 103

Controlling Access to
Symbols in Your Program

5.3.3. Using SET SCOPE to Specify a Symbol Search
Scope

By default, the debugger looks up symbols that you specify without a pathname prefix by using the scope search
list described in Section 5.3.1, “Symbol Lookup Conventions”.

The SET SCOPE command enables you to establish a new scope for symbol lookup so that you do not have to
use a path name when referencing symbols in that scope.

In the following example, the SET SCOPE command establishes the path name MOD4 \ROUT?2 as the new scope
for symbol lookup. Then, references to Y without a pathname prefix specify the declaration of Y that is visible
in the new scope.

DBG>EXAM NE Y

YEBUG E- NOUNI QUE, synbol 'Y' is not unique
DBG>SHOW SYMBOL Y

dat a MOD7\ ROUT3\ BLOCK1\ Y

dat a MOD4\ ROUT2\ Y

DBG>SET SCOPE MOD4\ ROUT2

DBG>EXAM NE Y

MOD4\ ROUT2\ Y: 12

DBG>

After you enter a SET SCOPE command, the debugger applies the pathname you specified in the command to
all references that are not individually qualified with path names.

You can specify numeric path names with SET SCOPE. For example, the following command sets the current
scope to be three calls down from the PC scope:

DBG>SET SCOPE 3

You can also define a scope search list to specify the order in which the debugger should search for symbols. For
example, the following command causes the debugger to look for symbols first in the PC scope (scope 0) and then
in the scope denoted by routine ROUT2 of module MOD4:

DBG>SET SCOPE 0, MOD4\ ROUT2
The debugger's default scope search list is equivalent to entering the following command (if it existed):

DBG>SET SCOPE 0, 1, 2, 3,
.y N

Here the debugger searches successively down the call stack to find a symbol.

You can use the SET SCOPE /CURRENT command to reset the reference for the default scope search list to
another routine down the call stack. For example, the following command sets the scope search list to be 2, 3,
4,...,n:

DBG>SET SCOPE/ CURRENT 2

To display the current scope search list for symbol lookup, use the SHOW SCOPE command. To restore the
default scope search list (see Section 5.3.1, “Symbol Lookup Conventions”), use the CANCEL SCOPE command.

5.4. Debugging Shareable Images

By default, your program might be linked with several HPE-supplied shareable images (for example, the run-time
library image L1 BRTL. EXE). This section explains how to extend the concepts described in the previous sections
when debugging user-defined shareable images.

104 VSI Confidential, NDA Required

Controlling Access to
Symbols in Your Program

A shareable image is not intended to be directly executed. A shareable image must first be included as input in
the linking of an executable image, and then the shareable image is loaded at run time when the executable image
is run. You do not have to install a shareable image to debug it. Instead, you can debug your own private copy
by assigning a logical name to it.

See the OpenVMS Linker Utility Manual for detailed information about linking shareable images.

5.4.1. Compiling and Linking Shareable Images for
Debugging

The basic steps in compiling and linking a shareable image for debugging are as follows:

1. Compile the source files for the main image and for the shareable image, by using the /DEBUG qualifier.

2. Link the shareable image with the/ SHAREABLE and /DEBUG command qualifiers and declare any universal
symbols for that image. (A universal symbol is a global symbol that is defined in a shareable image and
referenced in another image.)

3. Link the shareable image against the main image by specifying the shareable image with the/ SHAREABLE
file qualifier as a linker option. Also specify the/DEBUG command qualifier.

4. Define a logical name to point to the local copy of the shareable image. You must specify the device and
directory as well as the image name. Otherwise the image activator looks for an image of that name in the
system default shareable image library directory, SYSSSHARE.

5. Bring the main image under debugger control. The shareable image is loaded at run time.

These steps are shown next with a simple example. In the example, MAIN.FOR and SUB1.FOR are the source
files for the main (executable) image; SHR1.FOR and SHR2.FOR are the source files for the shareable image to
be debugged.

You compile the source files for each image as described in Section 5.1, “Controlling Symbol Information When
Compiling and Linking”.

$ FORTRAN NOOPT/ DEBUG MAI N, SUB1
$ FORTRAN NOOPT/ DEBUG SHR1, SHR2

On Alpha processors, use the LINK command with the SYMBOL_VECTOR option to create the shareable image
and specify any universal symbols. For example:

$ LI NK/ SHAREABLE/ DEBUG SHR1, SHR2, SYS$I NPUT: / OPTI ONS
SYMBOL_VECTOR=(SHR_ROUT=PROCEDURE)
crl/z

In the previous examples:

* The /SHAREABLE command qualifier creates the shareable image SHR1. EXE from the object files
SHR1. OBJ and SHR2. OBJ.

* The /OPTIONS qualifier appended to SYSSINPUT: enables you to specify the universal symbol SHR_ROUT.

* The /DEBUG qualifier builds a debug symbol table (DST) and a global symbol table (GST) for SHR1. EXE
and puts them in that image. The GST contains the universal symbol SHR_ROUT.

You have now built the shareable image SHR1. EXE in your current default directory. Because SHR1. EXE is a
shareable image, you do not execute it explicitly. Instead you link SHR1. EXE against the main (executable) image:

$ LI NK/ DEBUG MAIN, SUB1, SYS$I NPUT:/ OPTI ONS
SHR1. EXE/ SHAREABLE Ctrl/Z

VSI Confidential, NDA Required 105

Controlling Access to
Symbols in Your Program

$

In the previous example:
* The LINK command creates the executable image MAI N. EXE from MAI N. OBJ and SUB1. OBJ.
* The /DEBUG qualifier builds a DST and a GST for MAI N. EXE and puts them in that image.

* The /SHAREABLE qualifier appended to SHR1. EXE specifies that SHR1. EXE is to be linked against
MAI N. EXE as a shareable image.

When you execute the resulting main image, MAI N. EXE, any shareable images linked against it are loaded at run
time. However, by default, the image activator looks for shareable images in the system default shareable image
library directory, SYSSSHARE. Therefore, you must define the logical name SHRI1 to point to SHR1. EXE in
your current default directory. Be sure to specify the device and directory:

$ DEFI NE SHR1 SYS$DI SK: [] SHRL. EXE

You can now bring both MAIN and SHR1 under debugger control by specifying MAIN with the debugger RUN
command (after starting the debugger):

$ DEBUG KEEP
Debugger Banner and Versi on Nunber
DBG>RUN MAI N

5.4.2. Accessing Symbols in Shareable Images

All the concepts covered in Section 5.1, “Controlling Symbol Information When Compiling and Linking”,
Section 5.2, “Setting and Canceling Modules”, and Section 5.3, “Resolving Symbol Ambiguities” apply to the
modules of a single image, namely the main (executable) image. This section provides additional information that
is specific to debugging shareable images.

When you link shareable images for debugging as explained in Section 5.4.1, “Compiling and Linking Shareable
Images for Debugging”, the linker builds a DST and a GST for each image. The GST for a shareable image contains
only universal symbols. To conserve memory, the debugger builds an RST for an image only when that image is
set, either dynamically by the debugger or when you use a SET IMAGE command.

The SHOW IMAGE command identifies all shareable images that are linked with your program, shows which
images are set, and identifies the current image (see Section 5.4.2.2, “Accessing Symbols in Arbitrary Images”
for a definition of the current image). Only the main image is set initially when you bring the program under
debugger control.

The following sections explain how the debugger sets images dynamically during program execution and how you
can access symbols in arbitrary images independently of execution.

See Section 3.4.3.4, “Setting Watchpoints in Installed Writable Shareable Images” for information about setting
watch points in installed writable shareable images.

5.4.2.1. Accessing Symbols in the PC Scope (Dynamic Mode)

By default, dynamic mode is enabled. Therefore, whenever the debugger interrupts execution, the debugger sets
the image and module where execution is paused, if they are not already set.

Dynamic mode gives you the following access to symbols automatically:
* You can reference symbols defined in all set modules in the image where execution is paused.
* You can reference any universal symbols in the GST for that image.

By setting other modules in that image with the SET MODULE command, you can reference any symbol defined
in the image.

106 VSI Confidential, NDA Required

Controlling Access to
Symbols in Your Program

After an image is set, it remains set until you cancel it with the CANCEL IMAGE command. If the debugger
slows down as more images and modules are set, use the CANCEL IMAGE command. You can also enter the
SET MODE NODYNAMIC command to disable dynamic mode.

5.4.2.2. Accessing Symbols in Arbitrary Images

The last image that you or the debugger sets is the current image. The current image is the debugging context
for symbol lookup. Therefore, when using the following commands, you can reference only the symbols that are
defined in the current image:

DEFINE/ADDRESS
DEFINE/VALUE
DEPOSIT

EVALUATE

EXAMINE

TYPE

(SET, CANCEL) BREAK
(SET, SHOW, CANCEL) MODULE
(SET, CANCEL) TRACE
(SET, CANCEL) WATCH
SHOW SYMBOL

Note that the SHOW BREAK, SHOW TRACE, and SHOW WATCH commands identify any breakpoints,
tracepoints, or watchpoints that have been set in all images.

To reference a symbol in another image, use the SET IMAGE command to make the specified image the current
image, then use the SET MODULE command to set the module where that symbol is defined (the SET IMAGE
command does not set any modules). The following sample program shows these concepts.

The sample program consists of a main image PROGI and a shareable image SHR1. Assume that you have just
brought the program under debugger control and that execution is paused within the main program unit in image
PROG]. Assume that you want to set a breakpoint on routine ROUT2, which is defined in some module in image
SHRI1.

If you try to set a breakpoint on ROUT2, the debugger looks for ROUT2 in the current image, PROG1:
DBG>SET BREAK ROUT2

YOEBUG E- NOSYMBOL, synbol 'ROUT2' is not in synmbol table
DBG>

The SHOW IMAGE command shows that image SHR1 needs to be set:

DBG>SHOW | MAGE

i mge nane set base address end address

* PROGL yes 00000200 000009FF
SHR1 no 00001000 00001FFF
total images: 2 bytes all ocated: 32856

DBG>SET | MAGE SHR1
DBG>SHOW | MAGE

i mge nane set base address end address
PROGL yes 00000200 000009FF

* SHR1 yes 00001000 00001FFF
total images: 2 bytes all ocated: 41948

DBG>

SHR1 is now set and is the current image. However, because the SET IMAGE command does not set any modules,
you must set the module where ROUT?2 is defined before you can set the breakpoint:

VSI Confidential, NDA Required 107

Controlling Access to
Symbols in Your Program

DBG>SET BREAK ROUT2

YOEBUG E- NOSYMBCOL, synmbol 'ROUT2' is not in synmbol table
DBG>SET MODULE/ ALL

DBG>SET BREAK ROUT2

DBG>GO

break at routine ROUT210: SUBROUTI NE ROUT2(A, B)
DBG>

Now that you have set image SHR1 and all its modules and have reached the breakpoint at ROUT2, you can debug
using the normal method (for example, step through the routine, examine variables, and so on).

After you have set an image and set modules within that image, the image and modules remain set even if you
establish a new current image. However, you have access to symbols only in the current image at any one time.

5.4.2.3. Accessing Universal Symbols in Run-Time Libraries and
System Images

The following paragraphs describe how to access a universal symbol (such as a routine name) in a run-time library
or other shareable image for which no symbol-table information was generated. With this information you can,
for example, use the CALL command to execute a run-time library or system service routine as explained in
Section 13.7, “Calling Routines Independently of Program Execution”.

Enter the SET MODULE command with the following command syntax:
SET MODULE SHARES$i nage- nane

For example:

DBG>SET MODULE SHARES$LI BRTL

The debugger creates dummy modules for each shareable image in your program. The names of these shareable
image modules have the prefix SHARES. The command SHOW MODULE /SHARE identifies these shareable
image modules as well as the modules in the current image.

Once a shareable image module has been set with the SET MODULE command, you can access all of the image's
universal symbols. For example, the following command lists all of the universal symbols in LIBRTL:

DBG>SHOW SYMBOL * | N SHARES$LI BRTL
#

routi ne SHARE$LI BRTL\ STR$APPEND
routi ne SHARE$LI BRTL\ STR$DI VI DE
routi ne SHARE$LI BRTL\ STR$ROUND

#

routi ne SHARE$LI BRTL\ LI BSWAI T
routi ne SHARE$LI BRTL\ LI B$GETDVI

#

You can then specify these universal symbols with, for example, the CALL or SET BREAK command.

Setting a shareable image module with the SET MODULE command loads the universal symbols for that image
into the run-time symbol table so that you can reference these symbols from the current image. However, you
cannot reference other (local or global) symbols in that image from the current image. That is, your debugging
context remains set to the current image.

5.4.3. Debugging Resident Images (Alpha Only)

A resident image is a shareable module that is created and installed in a particular way to enhance its efficiency. The
requirements of creating such an image include linking the image without a symbol table, and running the image
in system space. These requirements make such an image difficult to debug. The following procedure creates a
resident image that can be more easily debugged.

108 VSI Confidential, NDA Required

Controlling Access to
Symbols in Your Program

9.

. Compile the shareable image. For example:

$ CC/ DEBUG NOOPTI M ZE RESI DENTMODULE. C

. Link the shareable image using the /DSF qualifier. For example:

$ LI NK/ NOTRACEBACK/ SHAREABLE/ SECTI ON_BI NDI NG DSF RESI DENTMODULE

See the OpenVMS Linker Utility Manual for information about linking the image.

. Create the installed resident image. See OpenVMS System Management UtilitiesReference Manual: A--L

for information about using the Install utility. See OpenVMS System Manager's Manual, Volume 2: Tuning,
Monitoring, and Complex Systems for information about resident images.

. Compile the program that calls the resident image. For example:

$ CC/ DEBUG NOOPTI M ZE TESTPROGRAM

. Create the executable image that calls the resident image. For example:

$ LI NK/ DSF TESTPROGRAM

. Create a private copy of the resident image. For example:

$ COPY SYS$LI BRARY: RESI DENTMODULE. EXE [] RESI DENTMODULE. EXE

. Define a logical name that points to the private copy of the resident image. For example:

$ DEFI NE RESI DENTMODULE [] RESI DENTMODULE

. Make sure that the . DSF file for the test program and the . DSF file for the resident module both reside in

the same directory.

Define DBGHI MAGE_DSF_PATH to point to the directory that contains the . DSF files.

10.Invoke the debugger. For example:

$ DEBUG KEEP TESTPROGRAM

You should now have access to all debugging options for the executable and resident images.

VSI Confidential, NDA Required 109

Controlling Access to
Symbols in Your Program

110 VSI Confidential, NDA Required

Controlling the Display
of Source Code

Chapter 6. Controlling the Display of
Source Code

The term source code refers to statements in a programming language as they appear in a source file. Each line
of source code is also called a source line.

This chapter covers the following topics:

* Obtaining information about source files and source lines

* Specifying the location of a source file that has been moved to another directory after it was compiled
» Displaying source lines by specifying line numbers, code address expressions, or search strings

 Controlling the display of source code at breakpoints, tracepoints, and watchpoints and after a STEP command
has been executed

+ Using the SET MARGINS command to improve the display of source lines under certain circumstances

The techniques described in this chapter apply to screen mode as well as line (no screen) mode. Any difference in
behavior between line mode and screen mode is identified in this chapter and in the descriptions of the commands
discussed. (Screen mode is described in Chapter 7, Screen Mode.)

If your program has been optimized by the compiler, the code that is executing as you debug might not always
match your source code. See Section 14.1, “Debugging Optimized Code” for more information.

6.1. How the Debugger Obtains Source Code
Information

When a compiler processes source files to generate object modules, it assigns a line number to each source line
sequentially. For most languages, each compilation unit (module) starts with line 1. For other languages like Ada,
each source file, which might represent several compilation units, starts with line 1.

Line numbers appear in a source listing obtained with the /LIST compile-command qualifier. They also appear
whenever the debugger displays source code, either in line mode or screen mode. Moreover, you can specify line
numbers with several debugger commands (for example, TYPE and SET BREAK).

The debugger displays source lines only if you have specified the /DEBUG command with both the compile
command and the LINK command. Under these conditions, the symbol information created by the compiler and
passed to the debug symbol table (DST) includes source-line correlation records. Fora given module, source-line
correlation records contain the full file specification of each source file that contributes to that module. In addition,
they associate source records (symbols, types, and so on) with source files and line numbers in the module.

6.2. Specifying the Location of Source Files

The debug symbol table (DST) contains the full file specification of each source file when it was compiled. By
default, the debugger expects a source file to be in the same directory it was in at compile time. If a source file is
moved to a different directory after it is compiled, the debugger does not find it and issues a warning such as the
following when attempting to display source code from that file:

YOEBUG W UNAOPNSRC, unabl e to open source file DI SK: [JONES. WORK] PRG. FOR; 2

In such cases, use the SET SOURCE command to direct the debugger to the new directory. The command can be
applied to all source files for your program or to only the source files for specific modules.

For example, after you enter the following command line, the debugger looks for all source files in WORKS$:
[JONES. PROG3] :

VSI Confidential, NDA Required 111

Controlling the Display
of Source Code

DBG> SET SOURCE WORKS$: [JONES. PROG3]

You can specify a directory search list with the SET SOURCE command. For example, after the following
command line is entered, the debugger looks for source files first in the current default directory ([]) and then in
WORKS: [JONES. PROG3] :

DBG> SET SOURCE [], WORKS$: [JONES. PROG3]

If you want to apply the SET SOURCE command only to the source files for agiven module, use the/ MODULE=
nodul e- name qualifier and specify that module. For example, the following command line specifies that the
source files for module SCREEN 10 are in the directory DI SK2: [SM TH. SHARE] (the search of source files
for other modules is not affected by this command):

DBG> SET SOURCE/ MODULE=SCREEN | O DI SK2: [SM TH. SHARE]

To summarize, the SET SOURCE /MODULE command specifies the location of source files for a particular
module, but the SET SOURCE command specifies the location of source files for modules that were not
mentioned explicitly in SET SOURCE /MODULE commands.

When you enter a SET SOURCE command, be aware that one of the two qualifiers, /[LATEST or /EXACT,
will always be active. The /[LATEST qualifier directs the debugger to search for the latest version of your source
files (the highest-numbered version in your directory). The /EXACT qualifier, the default, directs the debugger to
search for the version last compiled (the version recorded in the debugger symbol table created at compile time).
For example, a SET SOURCE /LATEST command might search for SORT.FOR;3 while a SET SOURCE /
EXACT command might search for SORT.FOR;1.

Use the SHOW SOURCE command to display all source directory search lists currently in effect. The command
displays the search lists for specific modules (as previously established by one or more SET SOURCE /MODULE
commands) and the search list for all other modules (as previously established by a SET SOURCE command).
For example:

DBG> SET SOURCE [PRQJA], [PRQIB], USERS$: [PETER. PRQIC]
DBG> SET SOURCE/ MODULE=COBCLTEST [], DI SK$2:[PRQID]
DBG> SHOW SOURCE
source directory search list for COBOLTEST:
[]
DI SK$2: [PRQID]
source directory search list for all other nodules:
[PROJA]
[PRQIB]
USERS: [PETER. PRQIC]
DBG>

If no SET SOURCE or SET SOURCE/MODULE command has been entered, the SHOW SOURCE command
indicates that no search list is currently in effect.

Use the CANCEL SOURCE command to cancel the effect of a previous SET SOURCE command. Use the
CANCEL SOURCE /MODULE command to cancel the effect of a previous SET SOURCE /MODULE
command (specifying the same module name).

When a source directory search list has been canceled, the debugger again expects the source files corresponding
to the designated modules to be in the same directories they were in at compile time.

For more information about how the debugger locates source files that have been moved to another directory after
compile time, see the SET SOURCE command.

6.3. Displaying Source Code by Specifying
Line Numbers

112 VSI Confidential, NDA Required

Controlling the Display
of Source Code

The TYPE command enables you to display source lines by specifying compiler-assigned line numbers, where
each line number designates a line of source code.

For example, the following command displays line 160 and lines 22 to 24 of the module being debugged:

DBG> TYPE 160, 22:24
nodul e COBOLTEST

160: START-1| T- PARA
nodul e COBOLTEST

22: 02 SC2v2 PI C S99Vv99 COw VALUE 22.33.

23: 02 SC2V2N PI C S99V99 COwP VALUE -22. 33.

24: 02 CPP2 PI C PP99 COwP VALUE 0.0012.
DBG>

You can display all the source lines of a module by specifying a range of line numbers starting from 1 and ending
at a number equal to or greater than the largest line number in the module.

After displaying a source line, you can display the next line in that module by entering a TYPE command without
a line number - that is, by entering a TYPE command and then pressing the Return key. For example:

DBG> TYPE 160
nodul e COBOLTEST
160: START-I| T- PARA.
DBG> TYPE
nodul e COBOLTEST
161: MOVE SC1 TO ESO.
DBG>

You can then display the next line and successive lines by entering the TYPE command repeatedly, which lets
you read through your code one line at a time.

To display source lines in an arbitrary module of your program, specify the module name with the line numbers.
Use standard pathname notation - that is, first specify the module name, then a backslash (\), and finally the line
numbers (or the range of line numbers) without intervening spaces. For example, the following command displays
line 16 of module TEST:

DBG> TYPE TEST\ 16

If you specify a module name with the TYPE command, the module must be set. Use the SHOW MODULE
command to determine whether a particular module is set. Then use the SET MODULE command, if necessary
(see Section 5.2, “Setting and Canceling Modules”).

If you do not specify a module name with the TYPE command, the debugger displays source lines for the module
in which execution is currently paused by default - that is, the module associated with the PC scope. If you
have specified another scope with the SET SCOPE command, the debugger displays source lines in the module
associated with the specified scope.

In screen mode, the output of a TYPE command updates the current source display (see Section 7.2.6, “SOURCE
Display Kind”).

After displaying source lines at various locations in your program, you can redisplay the line at which execution
is currently paused by pressing KP5.

6.4. Displaying Source Code by Specifying
Code Address Expressions

The EXAMINE /SOURCE command enables you to display the source line corresponding to a code address
expression. A code address expression denotes the address of a machine-code instruction and, therefore, must be
one of the following:

VSI Confidential, NDA Required 113

Controlling the Display
of Source Code

* A line number associated with one or more instructions
* A label

¢ A routine name

* The memory address of an instruction

You cannot specify a variable name with the EXAMINE /SOURCE command, because a variable name is
associated with data, not with instructions.

When you use the EXAMINE /SOURCE command, the debugger evaluates the address expression to obtain a
memory address, determines which compiler-assigned line number corresponds to that address, and then displays
the source line designated by the line number.

For example, the following command line displays the source line associated with the address (declaration) of
routine SWAP:

DBG> EXAM NE/ SOURCE SWAP
nodul e MAIN

47: procedure SWAP(X, Y: in out INTEGER) is
DBG>

If you specify a line number that is not associated with an instruction, the debugger issues a diagnostic message.
For example:

DBG> EXAM NE/ SOURCE %.| NE 6

YOEBUG | -LINEINFO, no line 6, previous lineis 5 next lineis 8
YOEBUG E- NOSYMBOL, synbol "%.INE 6' is not in the synbol table
DBG>

When using the EXAMINE /SOURCE command with a symbolic address expression (a line number, label, or
routine), you might need to set the module in which the entity is defined, unless that module is already set. Use
the SHOW MODULE command to determine whether a particular module is set. Then, if necessary, use the SET
MODULE command (see Section 5.2, “Setting and Canceling Modules”).

The command EXAMINE/SOURCE .%PC displays the source line corresponding to the current PC value (the
line that is about to be executed). For example:

DBG> EXAM NE/ SCURCE . %°C
nodul e COBCOLTEST

162: DI SPLAY ESO.
DBG>

Note the use of the contents-of operator (.), which specifies the contents of the entity that follows the period. If you
do not use the contents-of operator, the debugger tries to find a source line for the PC rather than for the address
currently stored in the PC:

DBG> EXAM NE/ SOURCE %°C
YDEBUG W NOSRCLI N, no source |ine for address 7FFF0O05C
DBG>

The following example shows the use of a numeric path name (1) to display the source line at the PC value one
level down the call stack (at the call to the routine in which execution is paused):

DBG> EXAM NE/ SCURCE . 1\ %°C

In screen mode, the output of an EXAMINE /SOURCE command updates the current source display (see
Section 7.2.6, “SOURCE Display Kind”).

The debugger uses the EXAMINE /SOURCE command in the following contexts to display source code at the
current PC value.

114 VSI Confidential, NDA Required

Controlling the Display
of Source Code

Keypad key 5 (KP5) is bound to the following debugger command sequence:
EXAM NE/ SOURCE . “SOURCE_SCOPE\ %°C;, EXAM NE/ | NST . 9% NST_SCOPE\ %°C

This command sequence displays the source line and the instruction at which execution is currently paused in the
current scope. Pressing KP5 enables you to quickly determine your debugging context.

The predefined source display SRC is an automatically updated display that executes the following built-in
command every time the debugger interrupts execution and prompts for commands (see Section 7.4.1, “Predefined
Source Display (SRC)”):

EXAM NE/ SOURCE . %SOURCE_SCOPE\ %4°C

6.5. Displaying Source Code by Searching for
Strings

The SEARCH command enables you to display any source lines that contain an occurrence of a specified string.
The syntax of the SEARCH command is as follows:

SEARCH /qualifier[, .]] [range] [string]

The range parameter can be a module name, a range of line numbers, or a combination of both. If you do not
specify a module name, the debugger uses the current scope to find source lines, as with the TYPE command (see
Section 6.3, “Displaying Source Code by Specifying Line Numbers”).

By default, the SEARCH command displays the source line that contains the first (next) occurrence of a string
in a specified range (SEARCH /NEXT). The command SEARCH /ALL displays all source lines that contain an
occurrence of a string in a specified range. For example, the following command line displays the source line that
contains the first occurrence of the stringpro in module SCREEN_10O:

DBG> SEARCH SCREEN | O pro

The remaining examples use source lines from one COBOL module, in the current scope, to show various aspects
of the SEARCH command.

The following command line displays all source lines within lines 40 to 50 that contain an occurrence of the string
D:

DBG> SEARCH ALL 40:50 D
nmodul e COBOLTEST

40: 02 D2N COWP- 2 VALUE -234560000000.

41: 02 D COWP- 2 VALUE 222222. 33.

42: 02 DN COWP- 2 VALUE -222222. 333333.

47: 02 DRO COWP-2 VALUE O.1.

48: 02 DR5 COWP-2 VALUE 0.000001.

49: 02 DR10 COWP-2 VALUE 0.00000000001.

50: 02 DR15 COWP-2 VALUE 0.0000000000000001.
DBG>

After you have found an occurrence of a string in a particular module, you can enter the SEARCH command with
no parameters to display the source line containing the next occurrence of the same string in the same module.
This is similar to using the TYPE command without a parameter to display the next source line. For example:

DBG> SEARCH 42:50 D
nodul e COBOLTEST
42: 02 DN COWP- 2 VALUE -222222. 333333.
DBG> SEARCH
nodul e COBOLTEST

VSI Confidential, NDA Required 115

Controlling the Display
of Source Code

47: 02 DRO COwP-2 VALUE O0.1.
DBG>

By default, the debugger searches for a string as specified and does not interpret the context surrounding an
occurrence of the string (this is the behavior of SEARCH /STRING).If you want to locate an occurrence of a string
that is an identifier in your program (for example, a variable name) and exclude other occurrences of the string,
use the /[IDENTIFIER qualifier. The command SEARCH /IDENTIFIER displays only those occurrences of the
string that are bounded on either side by a character that cannot be part of an identifier in the current language.

The default qualifiers for the SEARCH command are /NEXT and /STRING. If you want to establish different
default qualifiers, use the SET SEARCH command. For example, after the following command is executed, the
SEARCH command behaves like SEARCH /IDENTIFIER:

DBG> SET SEARCH | DENTI FI ER

Use the SHOW SEARCH command to display the default qualifiers currently in effect for the SEARCH
command. For example:

DBG> SHOW SEARCH
search settings: search for next occurrence, as an identifier
DBG>

6.6. Controlling Source Display After
Stepping and at Event points

By default, the debugger displays the associated source line when a breakpoint, tracepoint, or watchpoint is
triggered and upon the completion of a STEP command.

When you enter a STEP command, the debugger displays the source line at which execution is paused after the
step. For example:

DBG> STEP
stepped to MAIN %1 NE 16

16: RANGE : = 500;
DBG>

When a breakpoint or tracepoint is triggered, the debugger displays the source line at the breakpoint or tracepoint,
respectively. For example:

DBG> SET BREAK SWAP
DBG> GO
#
break at MAI N\ SWAP
47: procedure SWAP(X, Y: in out INTEGER) is
DBG>

When a watchpoint is triggered, the debugger displays the source line corresponding to the instruction that caused
the watch point to be triggered.

The SET STEP [NO]JSOURCE command enables you to control the display of source code after a step and at
breakpoints, tracepoints, and watchpoints. SET STEP SOURCE, the default, enables source display. SET STEP
NOSOURCE suppresses source display. For example:

DBG> SET STEP NOSOURCE
DBG> STEP

stepped to MAIN%.I NE 16
DBG> SET BREAK SWAP
DBG> GO

116 VSI Confidential, NDA Required

Controlling the Display
of Source Code

#
break at NMAI N\ SWAP
DBG>

You can selectively override the effect of a SET STEP SOURCE command or a SET STEP NOSOURCE
command by using the qualifiers /'SOURCE and /NOSOURCE with the STEP, SET BREAK, SET TRACE,
and SET WATCH commands.

The STEP /SOURCE command overrides the effect of the SET STEP NOSOURCE command, but only for the
duration of that STEP command (similarly, STEP /NOSOURCE overrides the effect of SET STEP SOURCE
for the duration of that STEP command). For example:

DBG> SET STEP NOSOURCE
DBG> STEP/ SOURCE
stepped to MAI N %1 NE
16 16: RANGE : = 500;
DBG>

The SET BREAK/SOURCE command overrides the effect of the SET STEP NOSOURCE command, but only
for the breakpoint set with that SET BREAK command(similarly, SET BREAK /NOSOURCE overrides the
effect of SET STEP SOURCE for the breakpoint set with that SET BREAK command). The same conventions
apply to the SET TRACE and SET WATCH commands. For example:

DBG> SET STEP SOURCE
DBG> SET BREAK/ NOSOURCE SWAP

DBG> GO

#

break at MAI N\ SWAP
DBG>

6.7. Setting Margins for Source Display

The SET MARGINS command enables you to specify the leftmost and rightmost source-line character positions
at which to begin and end the display of a source line (respectively, the left and right margins). This is useful for
controlling the display of source code when, for example, the code is deeply indented or long lines wrap at the
right margin. In such cases, you can set the left margin to eliminate indented space in the source display, and you
can decrease the right margin setting to truncate lines and prevent them from wrapping.

For example, the following command line sets the left margin to column 20 and the right margin to column 35.
DBG> SET MARG NS 20: 35

Subsequently, only that portion of the source code that is between columns 20 and 35 is displayed when you
enter commands that display source lines (for example, TYPE, SEARCH, STEP). Use the SHOW MARGINS
command to identify the current margin settings for the display of source lines.

Note that the SET MARGINS command affects only the display of source lines. It does not affect the display of
other debugger output (for example, output from an EXAMINE command).

The SET MARGINS command is useful mostly in line (no screen) mode. In screen mode, the SET MARGINS
command has no effect on the display of source lines in a source display, such as the predefined display SRC.

VSI Confidential, NDA Required 117

Controlling the Display
of Source Code

118 VSI Confidential, NDA Required

Screen Mode

Chapter 7. Screen Mode

Screen mode is an enhancement to the command line interface of the OpenVMS debugger that enables you to
simultaneously display separate groups of data about the debugging session, in a manner similar to that available
with the HP DECwindows Motif for OpenVMS user interface (see Part III, “DECwindows Interface”). For
example, you can display source code in one portion of the screen, register contents in a different portion, debugger
output in another portion, and so on.

To invoke screen mode, press PF3 on the keypad (or enter the SET MODE SCREEN command). To return to
line-oriented debugging, press PF1 PF3 (or enter the SET MODE NOSCREENcommand).

Note

Note that you cannot enter screen mode from within the DECWindows Motif interface to the debugger.

Screen mode output is best displayed on VT-series terminals with higher numbers than VT52, and on workstations
running VWS. The larger screen of workstations is particularly suitable to using a number of displays for different
purposes.

This chapter covers the following topics:

* Screen mode concepts and terminology used throughout the chapter

» Using different kinds of displays

 Directing debugger output to different displays by assigning display attributes

» Using predefined displays SRC, OUT, PROMPT, INST, REG, IREG, and FREG (Alpha only), which are
automatically available when you enter screen mode

* Scrolling, hiding, deleting, moving, and resizing a display

* Creating a new display

» Specifying a display window

* Creating a display configuration

 Saving the current state of screen displays

» Changing your terminal screen's height and width during a debugging session and the effect on display windows
 Using screen-related debugger built-in symbols

 Using predefined windows

* Enabling country-specific features for screen mode

Many screen mode commands are bound to keypad keys. For key definitions, see Appendix A, Predefined Key
Functions.

Note

This chapter provides information common to programs that run in one or several processes. See Chapter 15,
Debugging Multiprocess Programs for additional information specific to multiprocess programs.

7.1. Concepts and Terminology

A display is a group of text lines. The text can be lines from a source file, assembly-language instructions, the
values contained in registers, your input to the debugger, debugger output, or program input and output.

VSI Confidential, NDA Required 119

Screen Mode

You view a display through its display window, which can occupy any rectangular area of the screen. Because a
display window is typically smaller than the associated display, you can scroll the display window up, down, right,
and left across the display text to view any part of the display.

Figure 7.1, “Default Screen Mode Display Configuration” is an example of screen mode that shows three display
windows. The name of each display (SRC, OUT, and PROMPT) appears at the top left corner of its display window.
The display name serves both as a tag on the display itself and as a name for future reference in commands.

Figure 7.1. Default Screen Mode Display Configuration

Placeholder
for images

Figure 7.1, “Default Screen Mode Display Configuration” is the default display configuration established when
you first invoke screen mode. SRC, OUT, and PROMPT are three of the predefined displays that the debugger
provides when you enter screen mode (see Section 7.4, “Predefined Displays™).You can modify the configuration
of these displays as well as create additional displays.

Displays SRC, OUT, and PROMPT have the following basic characteristics:

» SRC is a source-code display that occupies the upper half of the screen(it displays Fortran code in Figure 7.1,
“Default Screen Mode Display Configuration”). The name of the source module displayed, SQUARESSMAIN,
is to the right of the display name.

* OUT, located in a window directly below SRC, shows the output of debugger commands.
* PROMPT, at the bottom of the screen, shows the debugger prompt and debugger input.

Conceptually, displays are placed on the screen as on a pasteboard. The display most recently referenced by
a command is put on top of the pasteboard by default. Therefore, depending on their screen locations, display
windows that you have referenced recently might overlay or hide other display windows.

The debugger maintains a display list, which is the pasting order of displays. Several keypad key definitions use
the display list to cycle through the displays currently on the pasteboard.

Every display belongs to a display kind (see Section 7.2, “Display Kinds”). The display kind determines what
type of information the display can capture and display, such as source code, or debugger output. The display kind
defines whether displayed data is paged into the memory buffer or discarded when the memory buffer over flows.
The display kind also determines how the contents of the display are generated.

The contents of a display are generated in two ways:

» Some displays are automatically updated. Their definition includes a command list that is executed whenever the
debugger gains control from the program. The output of the command list forms the contents of those displays.
Display SRC belongs to that category: it is automatically updated so that an arrow points to the source line at
which execution is currently paused.

» Other displays, for example, display OUT, are updated in response to commands you enter interactively. For a
display of this type to be updated, it must first be assigned an appropriate display attribute (with the SELECT
command). The display attribute identifies the display as the target display for one or more types of output (see
Section 7.3, “Display Attributes”).

The names of any attributes assigned to a display appear to the right ofthe display name, in lowercase letters. In
Figure 7.1, “Default Screen Mode Display Configuration”, SRC has the source and scroll attributes (SRC is the
current source display and the current scrolling display), OUT has the output attribute (it is the current output
display), and so on. Note that, although SRC is automatically updated by its own built-in command, it can also

120 VSI Confidential, NDA Required

Screen Mode

receive the output of certain interactive commands (such as EXAMINE /SOURCE) because it has the source
attribute.

The concepts introduced in this section are developed in more detail in the rest of this chapter.

7.2. Display Kinds

Every display has a display kind. The display kind determines the type of information a display contains, how that
information is generated, and whether the memory buffer associated with the display is paged.

Typically, you specify a display kind when you use the DISPLAY command to create a new display (if you do
not specify a display kind, an output display is created). You can also use the DISPLAY command to change the
display kind of an existing display with the following keywords:

DO (conmand[, ...])
INSTRUCTION
INSTRUCTION (comand)
OUTPUT

REGISTER

SOURCE

SOURCE (conmand)

The contents of a register display are generated and updated automatically by the debugger. The contents of other
kinds of displays are generated by commands, and these display kinds fall into two general groups.

A display that belongs to one of the following display kinds has its contents updated automatically according to
the command or command list you supply when defining that display:

DO (conmand[, ...])
INSTRUCTION (command)
REGISTER

SOURCE (conmand)

The command list specified is executed each time the debugger gains control from your program, if the display
is not marked as removed. The output of the commands forms the new contents of the display. If the display is
marked as removed, the debugger does not execute the command list until you view that display (marking that
display as unremoved).

A display that belongs to one of the following display kinds derives its contents from commands that you enter
interactively:

INSTRUCTION
OUTPUT
SOURCE

To direct debugger output to a specific display in this group, you must first select it with the SELECT command.
The technique is explained in the following sections and in Section 7.3, “Display Attributes”. After a display is
selected for a certain type of output, the output from your commands forms the contents of the display.

7.2.1. DO (Command[; ...]) Display Kind

A DO display is an automatically-updated display. The commands in the command list are executed in the order
listed each time the debugger gains control from your program. Their output forms the contents of the display and
erases any previous contents.

For example, the following command creates the DO display CALLS at window Q3. (Window Q3 refers to screen
dimensions of the window. For information about screen dimensions and predefined windows, see Section 7.12,
“Screen Dimensions and Predefined Windows”.) Each time the debugger gains control from the program, the
SHOW CALLS command is executed and the output is displayed in CALLS, replacing any previous contents.

DBG> DI SPLAY CALLS AT (B3 DO (SHOW CALLYS)

VSI Confidential, NDA Required 121

Screen Mode

The following command creates a DO display named V2 DISP that shows the contents of elements 4 to 7 of
the vector register V2 (using For tran array syntax). The display is automatically updated whenever the debugger
gains control from the program:

DBG> DI SPLAY V2_DI SP AT RQ® DO (EXAM NE %/2(4: 7))

The default size of the memory buffer associated with any DO display is 64 lines. When the memory buffer is
full, the oldest lines are discarded to make room for new text. You can use the DISPLAY /SIZE command to
change the buffer size.

7.2.2. INSTRUCTION Display Kind

An instruction display shows the output of an EXAMINE /INSTRUCTION command within the instruction
stream of a routine. Because the instructions displayed are decoded from the image being debugged and show the
exact code that is executing, this kind of display is particularly useful in helping you debug optimized code (see
Section 14.1, “Debugging Optimized Code™).

In the display, one line is devoted to each instruction. Source-line numbers corresponding to the instructions are
displayed in the left column. The instruction at the location being examined is centered in the display and is marked
by an arrow in the left column.

Before anything can be written to an instruction display, you must select it as the current instruction display with
the SELECT /INSTRUCTION command.

In the following example, the DISPLAY command creates the instruction display INST2 at RH1. The SELECT /
INSTRUCTION command then selects INST2 as the current instruction display. When the EXAMINE /
INSTRUCTION X command is executed, window RH1 fills with the instruction stream surrounding the location
denoted by X. The arrow points to the instruction at location X, which is centered in the display.

DBG> DI SPLAY | NST2 AT RHL | NSTRUCTI ON
DBG> SELECT/ | NSTRUCTI ON | NST2
DBG> EXAM NE/ | NSTRUCTI ON X

Each subsequent EXAMINE /INSTRUCTION command updates the display.

The default size of the memory buffer associated with any instruction display is 64 lines;however, you can scroll
back and forth to view all the instructions within the routine. You can use the DISPLAY /SIZE command to
change the buffer size and improve performance.

7.2.3. INSTRUCTION (Command) Display Kind

This is an instruction display that is automatically updated with the out put of the command specified. That
command, which must be an EXAMINE /INSTRUCTION command, is executed each time the debugger gains
control from your program.

For example, the following command creates the instruction display INST3 at window RS45. Each time
the debugger gains control, the built-in command EXAMINE /INSTRUCTION .%INST_SCOPE \%PC is
executed, updating the display.

DBG> DI SPLAY | NST3 AT RS45 | NSTRUCT (EX/ I NST . % NST_SCOPE\ %4°C)

This command creates a display that functions like the predefined display INST. The built-in EXAMINE/
INSTRUCTION command displays the instruction at the current PC value in the current scope(see Section 7.4.4,
“Predefined Instruction Display (INST)”).

If an automatically updated instruction display is selected as the current instruction display, it is updated like a
simple instruction display by an interactive EXAMINE /INSTRUCTION command (in addition to being updated
by its built-in command).

The default size of the memory buffer associated with any instruction display is 64 lines; however, you can scroll
back and forth to view all the instructions within the routine. You can use the DISPLAY /SIZE command to
change the buffer size and improve performance.

122 VSI Confidential, NDA Required

Screen Mode

7.2.4. OUTPUT Display Kind

An output display shows any debugger output that is not directed to another display. New output is appended to
the previous contents of the display.

Before anything can be written to an output display, it must be selected as the current output display with the
SELECT /OUTPUT command, or as the current error display with the SELECT /ERROR command, or as
the current input display with the SELECT /INPUT command. See Section 7.3, “Display Attributes” for more
information about using the SELECT command with output displays.

In the following example, the DISPLAY command creates the output display OUT?2 at window T2 (the display kind
OUTPUT can be omitted from this example, because it is the default kind). The SELECT /OUTPUT command
then selects OUT2 as the current output display. These two commands create a display that functions like the
predefined display OUT:

DBG> DI SPLAY QUT2 AT T2 OUTPUT
DBG> SELECT/ QUTPUT QUT2

OUT2 now collects any debugger output that is not directed to another display. For example:
* The output of a SHOW CALLS command goes to OUT?2.

» If no instruction display has been selected as the current instruction display, the output of an EXAMINE /
INSTRUCTION command goes to OUT?2.

* By default, debugger diagnostic messages are directed to the PROMPT display. They can be directed to OUT2
with the SELECT /ERROR command.

The default size of the memory buffer associated with any output display is 64 lines. When the memory buffer
is full, the oldest lines are discarded to make room for new text. You can use the DISPLAY /SIZE command to
change the buffer size.

7.2.5. REGISTER Display Kind

A register display is an automatically updated display that shows the current values, in hexadecimal format, of the
processor registers and as many of the top call-stack values as will fit in the display.

The register values displayed are for the routine in which execution is currently paused. The values are updated
whenever the debugger takes control. Any changed values are highlighted.

There are up to three predefined register displays. The REG, IREG, and FREG displays are predefined on Alpha
and Integrity server processors. The contents of the predefined displays are shown in Table 7.1, “Predefined
Register Displays”.

Table 7.1. Predefined Register Displays

Display Alpha Intel Itanium
REG -RO to R31 -PC
-PC -CFM
-PS -R1to R31
- FO to F31 - R32 to R127(as many as are
used)
- FPCR
-F2to F127
- top of call-stack values
- top-of-stack values
IREG -RO to R31 -PC

VSI Confidential, NDA Required 123

Screen Mode

Display Alpha Intel Itanium
-PC - CFM
-PS -R1to R31
- top of call-stack values - top of call-stack values

The data is shown in hexadecimal |The data is shown in hexadecimal

format. format.
FREG - FO to F31 -F2to F127
- FPCR - top-of-stack values
- SFPCR The register data is shown in the
format consistent with the data
- top of call-stack values value (integer or floating-point); the

stack values are shown in floating-

The data is shown in floating-point point format.

format.

On Alpha processors, the predefined display REG contains, in hexadecimal format, general-purpose registers R0
to R28, FP (R29), SP (R30), R31, PC, PS floating-point registers FO to F31, FPCR, SFPCR, and as many of the
top call-stack values as will fit in the display.

On Alpha processors, the predefined display IREG contains, in hexadecimal format, general-purpose registers RO
to R28, FP, and as many of the top call-stack values as can be displayed in the window.

On Alpha processors, the predefined display FREG contains floating-point registers FO to F31, FPCR, SFPCR,
displayed in floating-point format and as many of the top call-stack values (in hexadecimal format) as can be
displayed in the window.

The default size of the memory buffer associated with any register display is 64 lines. When the memory buffer
is full, the oldest lines are discarded to make room for new text. You can use the DISPLAY /SIZE command to
change the buffer size.

7.2.6. SOURCE Display Kind

A source display shows the output of a TYPE or EXAMINE /SOURCE command within the source code of a
module, if that source code is available. Source line numbers are displayed in the left column. The source line that
is the output of the command is centered in the display and is marked by an arrow in the left column. If a range of
lines is specified with the TYPE command, the lines are centered in the display, but no arrow is shown.

Before anything can be written to a source display, you must select it as the current source display with the
SELECT /SOURCE command.

In the following example, the DISPLAY command creates source display SRC2 at Q2. The SELECT /SOURCE
command then selects SRC2 as the current source display. When the TYPE 34 command is executed, window
RHI1 fills with the source code surrounding line 34 of the module being debugged. The arrow points to line 34,
centered in the display.

DBG> DI SPLAY SRC2 AT 2 SOURCE
DBG> SELECT/ SOURCE SRC2
DBG> TYPE 34

Each subsequent TYPE or EXAMINE /SOURCE command updates the display.

The default size of the memory buffer of a source display is 64 lines. The memory buffer of a source display
is paged, enabling you to scroll back and forth through the entire source module or routine. You can use the
DISPLAY /SIZE command to change the buffer size to improve performance.

124 VSI Confidential, NDA Required

Screen Mode

7.2.7. SOURCE (Command) Display Kind

This is a source display that is automatically updated with the output of the command specified. That command,
which must be an EXAMINE /SOURCE or TYPE command, is executed each time the debugger gains control
from your program.

For example, the following command creates source display SRC3 at window RS45. Each time the debugger gains
control, it executes the built-in command EXAMINE /SOURCE .%SOURCE_SCOPE \%PC and updates the
display.

DBG> DI SPLAY SRC3 AT RS45 SOURCE (EX/ SOURCE . %SOURCE_SCOPE\ %°C)

This command creates a display that functions like the predefined display SRC. The built-in EXAMINE /
SOURCE command displays the source line for the current PC value in the current scope(see Section 7.4.1,
“Predefined Source Display (SRC)”).

If you select an automatically updated source display as the current source display, it displays the output generated
by an interactive EXAMINE /SOURCE or TYPE command in addition to the output generated by its built-in
command.

The default size of the memory buffer of a source display is 64 lines. The memory buffer of an automatically
updated source display is paged, enabling you to scroll back and forth through the entire source module or routine.
You can use the DISPLAY /SIZE command to change the buffer size to improve performance.

7.2.8. PROGRAM Display Kind

A program display can receive the output of the program being debugged. The predefined PROMPT display
belongs to the program display kind, and is the only display permitted of that kind. You cannot create a new display
of the program display kind.

To avoid possible confusion, the PROMPT display has several restrictions (see Section 7.4.3, “Predefined Prompt
Display (PROMPT)”).

7.3. Display Attributes

In screen mode, the output from commands you enter interactively is directed to various displays according to the
type of output and the display attributes assigned to these displays. For example, debugger diagnostic messages
go to the display that has the error attribute(the current error display). By assigning one or more attributes to a
display, you can mix or isolate different kinds of information.

The attributes have the following names:

error
input
instruction
output
program
prompt
scroll
source

When a display is assigned an attribute, the name of that attribute appears in lowercase letters on the top border
of its window to the right of the display name. Note that the scroll attribute does not affect debugger output but is
used to control the default display for the SCROLL, MOVE, and EXPAND commands.

By default, attributes are assigned to the predefined displays as follows:
* SRC has the source and scroll attributes

* OUT has the output attribute

VSI Confidential, NDA Required 125

Screen Mode

* PROMPT has the prompt, program, and error attributes

To assign an attribute to a display, use the SELECT command with the qualifier of the same name as the attribute.
In the following example, the DISPLAY command creates the output display ZIP. The SELECT /OUTPUT
command then selects ZIP as the current output display - the display that has the output attribute. After this
command is executed, the word "output" disappears from the top border of the predefined output display OUT
and appears instead on display ZIP, and all the debugger output formerly directed to OUT is now directed to ZIP.

DBG> DI SPLAY ZI P OUTPUT
DBG> SELECT/ QUTPUT ZI P

You can assign specific attributes only to certain display kinds. The following list identifies each of the SELECT
command qualifiers, its effect, and the display kinds to which you can assign that attribute:

SELECT Qualifier Apply to Display Kind Description

/ERROR Output Prompt Selects the specified display as the
current error display. Directs any
subsequent debugger diagnostic
message to that display. If no
display is specified, selects the
PROMPT display as the current
error display.

/INPUT Output Selects the specified display as the
current input display. Echoes any
subsequent debugger input in that
display. If no display is specified,
unselects the current input display:
debugger input is not echoed to any
display.

/INSTRUCTION Instruction Selects the specified display as the
current instruction display. Directs
the output of any subsequent
EXAMINE /INSTRUCTION
command to that display. Keypad
key sequence PF4 COMMA
selects the next instruction display
in the display list as the current
instruction display. If no display
is specified, unselects the current
instruction display: no display has
the instruction attribute.

/OUTPUT Output Prompt Selects the specified display as
the current output display. Directs
any subsequent debugger output
to that display, except where a
particular type of output is being
directed to another display (such
as diagnostic messages going to
the current error display). Keypad
key sequence PF1 KP3 selects the
next output display in the display
list as the current output display.
If no display is specified, selects
the PROMPT display as the current
output display.

/PROGRAM Prompt Selects the specified display as
the current program display. Tries

126 VSI Confidential, NDA Required

Screen Mode

SELECT Qualifier

Apply to Display Kind

Description

to force any subsequent program
input or output to that display. If no
display is specified, unselects the
current program display: program
input and output are no longer
forced to the PROMPT display.

/PROMPT

Prompt

Selects the specified display as
the current prompt display where
the debugger prompts for input.
You cannot unselect the PROMPT
display.

/SCROLL

All

Selects the specified display as the
current scrolling display. Makes
that display the default display

for any subsequent SCROLL,
MOVE, or EXPAND command.
You can specify any display
(however, note that the PROMPT
display cannot be scrolled). The /
SCROLL qualifier is the default
if you do not specify a qualifier
with the SELECT command.

Key KP3 selects as the current
scrolling display the next display
in the display list after the current
scrolling display. If no display is
specified, unselects the current
scrolling display: no display has the
scroll attribute.

/SOURCE

Source

Selects the specified display as the
current source display. Directs the
output of any subsequent TYPE or
EXAMINE/SOURCE command to
that display. Keypad key sequence
PF4 KP3 selects the next source
display in the display list as the
current source display. If no display
is specified, unselects the current
source display: no display has the
source attribute.

Subject to the restrictions listed, a display can have several attributes. In the preceding example, ZIP was selected
as the current output display. In the next example, ZIP is further selected as the current input, error, and scrolling
display. After these commands are executed, debugger input, output, and diagnostics are logged in ZIP in the

proper sequence as they occur, and ZIP is the current scrolling display.

DBG> SELECT/ | NPUT/ ERROR/ SCROLL ZI P

To identify the displays currently selected for each of the display attributes, use the SHOW SELECT command.

If you use the SELECT command with a particular qualifier but without specifying a display name, the effect is
typically to deassign that attribute (to unselect the display that had the attribute). The exact effect depends on the
attribute, as described in the preceding table.

7.4. Predefined Displays

VSI Confidential, NDA Required

127

Screen Mode

The debugger provides the following predefined displays that you can use to capture and display different kinds
of data:

SRC, the predefined source display

OUT, the predefined output display

PROMPT, the predefined prompt display

INST, the predefined instruction display

REG, the predefined register display

FREG, the predefined floating-point register display (Alpha only)
IREG, the predefined integer register display

When you enter screen mode, the debugger puts SRC in the top half of the screen, PROMPT in the bottom sixth,
and OUT between SRC and PROMPT, as shown in Figure 7.1, “Default Screen Mode Display Configuration”.
Displays INST, REG, FREG (Alpha only), and IREG are initially removed from the screen by default.

To re-create this default configuration, press BLUE MINUS on the keypad (PF4 followed by the MINUS (--) key).
The basic features of the predefined displays are described in the next sections. As explained in other parts of this
chapter, you can change certain characteristics of these displays, such as the buffer size or display attributes. You
can also create additional displays similar to the predefined displays.

To display summary information about the characteristics of any display, use the SHOW DISPLAY command.

Table 7.2, “Predefined Displays” summarizes key information about the predefined displays.

Table 7.2. Predefined Displays

Display Name Display Kind Valid Display Attributes |Visible on Startup
SRC Source Scroll X
Source (By Default)
ouT Output Error X
Input
Output (By Default)
Scroll
PROMPT Output Error (By Default) X
Output
Program (By Default)
Prompt (By Default)
Scroll
INST Instruction Instruction
Scroll
REG Register Scroll
FREG (Alpha only) Register Scroll
IREG Register Scroll

"The predefined PROMPT display cannot be scrolled.

128 VSI Confidential, NDA Required

Screen Mode

7.4.1. Predefined Source Display (SRC)

Note

See Chapter 6, Controlling the Display of Source Code for information about how to make source code available
for display during a debugging session.

The predefined display SRC (see Figure 7.1, “Default Screen Mode Display Configuration™) is an automatically
updated source display.

You can use SRC to display source code in two basic ways:

* By default, SRC automatically displays the source code for the module in which execution is currently paused.
This enables you to quickly determine your current debugging context.

* Inaddition, because SRC has the source attribute by default, you can use it to display the source code for any part
of your program as explained in Section 7.4.1.1, “Displaying Source Code in Arbitrary Program Locations”.

The name of the module whose source code is displayed is shown at the right of the display name, SRC. The
numbers displayed at the left of the source code are the compiler-generated line numbers, as they might appear
in a compiler-generated listing file.

As you execute the program under debugger control, SRC is automatically updated whenever execution is paused.
The arrow in the left most column indicates the source line to be executed next. Specifically, execution is paused
at the first instruction associated with that source line. Thus, the line indicated by the arrow corresponds to the
current program counter (PC) value. The PC is a register that contains the memory address of the next instruction
to be executed.

If the debugger cannot locate source code for the routine in which execution is paused (because, for example, the
routine is a run-time library routine), it tries to display source code in the next routine down on the call stack for
which source code is available. When displaying source code for such a routine, the debugger issues the following
message:

Y%DEBUG- | - SOURCESCOPE, Source |ines not available for .0\ %C.
Di spl aying source in a caller of the current routine.

Figure 7.2, “Screen Mode Source Display When Source Code Is Not Available” shows this feature. The source
display shows that a call to routine TYPE is currently active. TYPE corresponds to a Fortran run-time library
procedure. No source code is available for that routine, so the debugger displays the source code of the calling
routine. The output of a SHOW CALLS command, shown in the output display, identifies the routine where
execution is paused and the call sequence leading to that routine.

In such cases, the arrow in the source window identifies the line to which execution returns after the routine call.
Depending on the source language and coding style, this might be the line that contains the call state mentor the
next line.

Figure 7.2. Screen Mode Source Display When Source Code Is Not Available

Placeholder
for images

If your program was optimized during compilation, the source code displayed in SRC might not always represent
the code that is actually executing. The predefined instruction display INST is useful in such cases, because its
hows the exact instructions that are executing (see Section 7.4.4, “Predefined Instruction Display (INST)”).

VSI Confidential, NDA Required 129

Screen Mode

The built-in command that automatically updates display SRC is EXAMINE/SOURCE .%SOURCE_SCOPE
\%PC. For information about the EXAMINE /SOURCE command, see Section 6.4, “Displaying Source Code
by Specifying Code Address Expressions”. The built-in debugger symbol %SOURCE_SCOPE denotes a scope
and has the following properties:

* By default %SOURCE_SCOPE denotes scope 0, which is the scope of the routine where execution is currently
paused.

* If you have reset the scope search list relative to the call stack by means of the SET SCOPE /
CURRENT command (see Section 7.4.1.2, “Displaying Source Code for a Routine on the Call Stack™),
%SOURCE_SCOPE denotes the current scope specified (the scope of the routine at the start of the search list).

* Ifsource code is not available for the routine in the current scope, %SOURCE_SCOPE denotes scope n, where
n is the first level down the call stack for which source code is available.

7.4.1.1. Displaying Source Code in Arbitrary Program Locations

You can use display SRC to display source code throughout your program, if source code is available for display:

* You can scroll through the entire source display by pressing KP2 (scroll down) or KP8 (scroll up) as explained
in Section 7.5.1, “Scrolling a Display”. This enables you to view any of the source code within the module in
which execution is paused.

* You can display the source code for any routine that is currently on the call stack by using the SET SCOPE /
CURRENT command (see Section 7.4.1.2, “Displaying Source Code for a Routine on the Call Stack™).

» Because SRC has the source attribute, you can display source code throughout your program by using the TYPE
and EXAMINE /SOURCE commands:

+ To display arbitrary source lines, use the TYPE command (see Section 6.3, “Displaying Source Code by
Specifying Line Numbers”).

+ To display the source line associated with a code location (for example, a routine declaration), use the
EXAMINE /SOURCE command (see Section 6.4, “Displaying Source Code by Specifying Code Address
Expressions”).

When using the TYPE or EXAMINE /SOURCE command, make sure that the module in which you want to
view source code is set first. Use the SHOW MODULE command to determine whether a particular module is
set. Then use the SET MODULE command, if necessary (see Section 5.2, “Setting and Canceling Modules”).

After manipulating the contents of display SRC, you can redisplay the location at which execution is currently
paused (the default behavior of SRC) by pressing KPS5.

7.4.1.2. Displaying Source Code for a Routine on the Call Stack

The command SET SCOPE /CURRENT lets you display the source code for any routine that is currently on
the call stack. For example, the following command updates display SRC so that it shows the source code for the
caller of the routine in which execution is currently paused:

DBG> SET SCOPE/ CURRENT 1

To reset the default scope for displaying source code, enter the command CANCEL SCOPE. The command
causes display SRC to show the source code for the routine at the top of the call stack where execution is paused.

7.4.2. Predefined Output Display (OUT)

Figure 7.1, “Default Screen Mode Display Configuration” and Figure 7.2, “Screen Mode Source Display When
Source Code Is Not Available” show some typical debugger output in the predefined display OUT.

Display OUT is a general-purpose output display. By default, OUT has the output attribute so it displays any
debugger output that is not directed to the source display SRC or the instruction display INST. For example, if

130 VSI Confidential, NDA Required

Screen Mode

display INST is not displayed or does not have the instruction attribute, any output that would otherwise update
display INST is shown in display OUT.

By default, OUT does not display debugger diagnostic messages (these appear in the PROMPT display). You
can assign display attributes to OUT so that it captures debugger input and diagnostics as well as normal output
(see Section 7.3, “Display Attributes”).

By default, the memory buffer associated with predefined display OUT contains 100 lines.

7.4.3. Predefined Prompt Display (PROMPT)

The predefined display PROMPT is the display in which the debugger prompts for input. Figure 7.1, “Default
Screen Mode Display Configuration” and Figure 7.2, “Screen Mode Source Display When Source Code Is Not
Available” show PROMPT in its default location, the bottom sixth of the screen.

By default, PROMPT has the prompt attribute. In addition, PROMPT also has (by default) the program and error
attributes, which force program output and diagnostic messages to that display.

PROMPT has different properties and restrictions than other displays. This is to eliminate possible confusion
when manipulating that display:

* The PROMPT display window is always fully visible. You cannot hide PROMPT (with the DISPLAY /HIDE
command), remove PROMPT from the pasteboard (with the DISPLAY /REMOVE command), or delete
PROMPT (with the CANCEL DISPLAY command).

* You can assign PROMPT the scroll attribute so that it receives the output of the MOVE and EXPAND
commands. However, you cannot scroll through the PROMPT display.

* The PROMPT display window always occupies the full width of the screen, beginning in the first column.

* You can move PROMPT vertically anywhere on the screen, expand it to fill the full screen height, or contract
it down to two lines.

The debugger alerts you if you try to move or expand a display such that it is hidden by PROMPT.

7.4.4. Predefined Instruction Display (INST)

Note

By default, the predefined instruction display INST is not shown on the screen and does not have the instruction
attribute (see Section 7.4.4.1, “Displaying the Instruction Display” and Section 7.4.4.2, “Displaying Instructions
in Arbitrary Program Locations”).

Display INST is an automatically updated instruction display. It shows the decoded instruction stream of your
program. This is the exact code that is executing, including the effects of any compiler optimization.

A VAX example is shown in Figure 7.3, “Screen Mode Instruction Display (VAX Example)”.

This type of display is useful when debugging code that has been optimized. In such cases some of the code
being executed might not match the source code that is shown in a source display. See Section 14.1, “Debugging
Optimized Code” for information about the effects of optimization.

You can use INST in two basic ways:

* By default, INST automatically displays the decoded instructions for the routine in which execution is currently
paused. This enables you to quickly determine your current debugging context.

* In addition, if INST has the instruction attribute, you can use it to display the decoded instructions for any part
of your program as explained in Section 7.4.4.2, “Displaying Instructions in Arbitrary Program Locations”.

VSI Confidential, NDA Required 131

Screen Mode

The name of the routine whose instructions are displayed is shown at the right of the display name, INST. The
numbers displayed at the left of the instructions are the compiler-generated source line numbers.

As you execute the program under debugger control, INST is updated automatically whenever execution is paused.
The arrow in the leftmost column points to the instruction at which execution is paused. This is the instruction that
will be executed next and whose address is the current PC value.

Figure 7.3. Screen Mode Instruction Display (VAX Example)

Placeholder
for images

The built-in command that automatically updates display INST is EXAMINE/INSTRUCTION
%INST_SCOPE\%PC.For information about the EXAMINE /INSTRUCTION command, see Section 4.3.1,
“Examining Instructions”.The built-in debugger symbol %INST SCOPE denotes a scope and has the following
properties:

* By default %INST _SCOPE denotes scope 0, which is the scope of the routine where execution is currently
paused.

« If you have reset the scope search list relative to the call stack by means of the SET SCOPE /CURRENT
command (see Section 7.4.4.3, “Displaying Instructions for a Routine on the Call Stack™), %INST SCOPE
denotes the current scope specified (the scope of the routine at the start of the search list).

7.4.4.1. Displaying the Instruction Display

By default, display INST is marked as removed (see Section 7.5.2, “Showing, Hiding, Removing, and Canceling a
Display”) from the display pasteboard and is not visible. To show display INST, use one of the following methods:

» Press KP7 to place displays SRC and INST side by side. This enables you to compare the source code and the
decoded instruction stream.

* Press PF1 KP7 to place displays INST and REG side by side.

* Enter the DISPLAY INST command to place INST in its default or most recently defined location (see
Section 7.5.2, “Showing, Hiding, Removing, and Canceling a Display”).

7.4.4.2. Displaying Instructions in Arbitrary Program Locations
You can use display INST to display decoded instructions throughout your program as follows:

* You can scroll through the entire instruction display by pressingKP2 (scroll down) or KP8 (scroll up) as
explained in Section 7.5.1, “Scrolling a Display”. This enables you to view any instruction within the routine
in which execution is paused.

* You can display the instruction stream for any routine that is currently on the call stack by using the SET
SCOPE/CURRENT command (see Section 7.4.4.3, “Displaying Instructions for a Routine on the Call Stack™).

« If INST has the instruction attribute, you can display the instructions for any code location throughout your
program by using the EXAMINE/INSTRUCTION command as follows:

* To assign INST the instruction attribute, use the SELECT/INSTRUCTION INST command (see
Section 7.2.2, “INSTRUCTION Display Kind” and Section 7.3, “Display Attributes”). Note that the
instruction attribute is automatically assigned to INST when you display it by pressing either KP7 or PF1 KP7.

132 VSI Confidential, NDA Required

Screen Mode

+ To display the instructions associated with a code location (for example, a routine declaration), use the
EXAMINE/INSTRUCTION command (see Section 4.3.1, “Examining Instructions”).

If no display has the instruction attribute, the output of an EXAMINE/INSTRUCTION command is directed
at display OUT.

After manipulating the contents of display INST, you can redisplay the location at which execution is currently
paused (the default behavior of INST) by pressing KP5.

7.4.4.3. Displaying Instructions for a Routine on the Call Stack

The SET SCOPE/CURRENT command lets you display the instructions for any routine that is currently on the
call stack. For example, the following command updates display INST so that it shows the instructions for the
caller of the routine in which execution is currently paused:

DBG> SET SCOPE/ CURRENT 1

To reset the default scope for displaying instructions, enter the CANCEL SCOPE command. The command causes
display INST to show the instructions for the routine at the top of the call stack where execution is paused.

7.4.4.4. Displaying Register Values for a Routine on the Call Stack

The SET SCOPE/CURRENT command lets you display the register values associated with any routine that is
currently on the call stack. For example, the following command updates display REG so that it shows the register
values for the caller of the routine in which execution is currently paused:

DBG> SET SCOPE/ CURRENT 1

To reset the default scope for displaying register values, enter the CANCEL SCOPE command. This command
causes display REG to show the register values for the routine at the top of the call stack, where execution is paused.

7.5. Manipulating Existing Displays
This section explains how to perform the following functions:

* Use the SELECT and SCROLL commands to scroll a display.

* Use the DISPLAY command to show, hide, or remove a display; the CANCEL DISPLAY command to
permanently delete a display; and the SHOW DISPLAY command to identify the displays that currently exist
and their order in the display list.

» Use the MOVE command to move a display across the screen.
» Use the EXPAND command to expand or contract a display.

Section 7.7, “Specifying a Display Window” and Section 7.2, “Display Kinds discuss more advanced techniques
for modifying existing displays with the DISPLAY command - how to change the display window and the type
of information displayed.

7.5.1. Scrolling a Display

A display usually has more lines of text (and possibly longer lines) than can be seen through its window. The
SCROLL command lets you view text that is hidden beyond a window's border. You can scroll through all displays
except for the PROMPT display.

The easiest way to scroll displays is with the keypad keys, described later in this section. Using the relevant
commands is explained first.

VSI Confidential, NDA Required 133

Screen Mode

You can specify a display explicitly with the SCROLL command. Typically, however, you first use the SELECT/
SCROLL command to select the current scrolling display. This display then has the scroll attribute and is the
default display for the SCROLL command. You then use the SCROLL command with no parameter to scroll that
display up or down by a specified number of lines, or to the right or left by a specified number of columns. The
direction and distance scrolled are specified with the command qualifiers (/UP: n, /RIGHT: n, and so on).

In the following example, the SELECT command selects display OUT as the current scrolling display (/SCROLL
can be omitted because it is the default qualifier); the SCROLL command then scrolls OUT to reveal text 18
lines down:

DBG> SELECT OUT
DBG> SCROLL/ DOWN: 18

Several useful SELECT and SCROLL command lines are assigned to keypad keys (See Appendix A, Predefined
Key Functions for a keypad diagram):

» Pressing KP3 assigns the scroll attribute to the next display in the display list after the current scrolling display.
To select a display as the current scrolling display, press KP3 repeatedly until the word "scroll" appears on the
top line of that display.

* Press KP8, KP2, KP6, or KP4 to scroll up, down, right, or left, respectively. The amount of scroll depends on
which key state you use (DEFAULT, GOLD, or BLUE).

7.5.2. Showing, Hiding, Removing, and Canceling a
Display

The DISPLAY command is the most versatile command for creating and manipulating displays. In its simplest
form, the command puts an existing display on top of the pasteboard where it appears through its current window.
For example, the following command shows the display INST through its current window:

DBG> DI SPLAY | NST

Pressing KP9, which is bound to the DISPLAY %NEXTDISP command, enables you to achieve this effect
conveniently. The built-in function % NEXTDISP signifies the next display in the display list. (Appendix B, Built-
In Symbols and Logical Names identifies all screen-related built-in functions.)Each time you press KP9, the next
display in the list is put on top of the pasteboard in its current window.

By default, the top line of display OUT (which identifies the display) coincides with the bottom line of display
SRC. If SRC is on top of the pasteboard, its bottom line hides the top line of OUT (keep this in mind when using
the DISPLAY command and associated keypad keys to put various displays on top of the pasteboard).

To hide a display at the bottom of the pasteboard, use the DISPLAY/HIDE command. This command changes
the order of that display in the display list.

To remove a display from the pasteboard so that it is no longer seen (yet is not permanently deleted), use the
DISPLAY/REMOVE command. To put a removed display back on the pasteboard, use the DISPLAY command.

To delete a display permanently, use the CANCEL DISPLAY command. To re-create the display, use the
DISPLAY command as described in Section 7.6, “Creating a New Display”.

Note that you cannot hide, remove, or delete the PROMPT display.

To identify the displays that currently exist, use the SHOW DISPLAY command. They are listed according to
their order on the display list. The display that is on top of the pasteboard is listed last.

For more information about the DISPLAY options, see the DISPLAY command. Note that the DISPLAY
command accepts optional parameters that let you modify other characteristics of existing displays, namely the
display window and the type of information displayed. The techniques are discussed in Section 7.7, “Specifying
a Display Window” and Section 7.2, “Display Kinds”.

134 VSI Confidential, NDA Required

Screen Mode

7.5.3. Moving a Display Across the Screen

Use the MOVE command to move a display across the screen. The qualifiers /UP: n, /DOWN: n, /RIGHT: n,
and /LEFT: n specify the direction and the number of lines or columns by which to move the display. If you do
not specify a display, the current scrolling display is moved.

The easiest way to move a display is by using keypad keys:
» Press KP3 repeatedly as needed to select the current scrolling display.

* Put the keypad in the MOVE state, then press KP§, KP2, KP4, or KP6 to move the display up, down, left, or
right, respectively. See Appendix A, Predefined Key Functions.

7.5.4. Expanding or Contracting a Display

Use the EXPAND command to expand or contract a display. The qualifiers /UP: n, /DOWN: n, /RIGHT: n, and
/LEFT: n specify the direction and the number of lines or columns by which to expand or contract the display
(to contract a display, specify negative integer values with these qualifiers). If you do not specify a display, the
current scrolling display is expanded or contracted.

The easiest way to expand or contract a display is to use the keypad keys:
» Press KP3 repeatedly as needed to select the current scrolling display.

 Put the keypad in the EXPAND or CONTRACT state, then press KP8, KP2, KP4, or KP6 to expand or contract
the display vertically or horizontally. See Appendix A, Predefined Key Functions.

The PROMPT display cannot be contracted (or expanded) horizontally. Also, it cannot be contracted vertically
to less than two lines.

7.6. Creating a New Display

To create a new screen display, use the DISPLAY command. The basic syntax is as follows:
DI SPLAY di spl ay- nane [AT wi ndow spec] [display-ki nd]

The display name can be any name that is not already used to name a display (use the SHOW DISPLAY command
to identify all existing displays). A newly created display is placed on top of the pasteboard, on top of any existing
displays (except for the predefined PROMPT display, which cannot be hidden). The display name appears at the
top left corner of the display window.

Section 7.7, “Specifying a Display Window” explains the options for specifying windows. If you do not provide a
window specification, the display is positioned in the upper or lower half of the screen, alternating between these
locations as you create new displays.

Section 7.2, “Display Kinds” explains the options for specifying display kinds. If you do not specify a display
kind, an output display is created.

For example, the following command creates a new output display named OUT2. The window associated with
OUT?2 is either the top or bottom half of the screen.

DBG> DI SPLAY QUT2

The following command creates a new DO display named EXAM XY that is located in the right third quarter (RQ3)
of the screen. This display shows the current value of variables X and Y and is updated whenever the debugger
gains control from the program.

DBG> DI SPLAY EXAM XY AT R@ DO (EXAM NE X, YY)

For more information, see the DISPLAY command.

VSI Confidential, NDA Required 135

Screen Mode

7.7. Specifying a Display Window
Display windows can occupy any rectangular portion of the screen.

You can specify a display window when you create a display with the DISPLAY command. You can also change
the window currently associated with a display by specifying a new window with the DISPLAY command. When
specifying a window, you have the following options:

* Specify a window in terms of lines and columns.
* Use the name of a predefined window, such as H1.
» Use the name of a window definition previously established with the SET WINDOW command.

Each of these techniques is described in the following sections. When specifying windows, keep in mind that the
PROMPT display always remains on top of the display pasteboard and, therefore, occludes any part of another
display that shares the same region of the screen.

Display windows, regardless of how specified, are dynamic. This means that, if you use a SET TERMINAL
command to change the screen height or width, the window associated with a display expands or contracts in
proportion to the new screen height or width.

7.7.1. Specifying a Window in Terms of Lines and
Columns

The general form of a window specification is (start-1ine, | i ne-count [,start-col um, col um-
count]). For example, the following command creates the output display CALLS and specifies that its window
be 7 lines deep starting at line 10, and 30 columns wide starting at column 50:

DBG> DI SPLAY CALLS AT (10, 7, 50, 30)

If you do not specify st art - col unm or col unn- count , the window occupies the full width of the screen.

7.7.2. Using a Predefined Window

The debugger provides many predefined windows. These have short, symbolic names that you can use in the
DISPLAY command instead of having to specify lines and columns. For example, the following command creates
the output display ZIP and specifies that its window be RH1 (the top right half of the screen):

DBG> DI SPLAY ZI P AT RH1

The SHOW WINDOW command identifies all predefined window definitions as well as those you create with
the SET WINDOW command.

7.7.3. Creating a New Window Definition

The predefined windows should be adequate for most situations, but you can also create a new window definition
with the SET WINDOW command. This command, which has the following syntax, associates a window name
with a window specification:

SET W NDOW wi ndow nane AT (start-line, line-count[, start-colum, colum-
count])

After creating a window definition, you can use its name (like that of a predefined window) in a DISPLAY
command. In the following example, the window definition MIDDLE is established. That definition is then used
to display OUT through the window MIDDLE.

DBG> SET W NDOW M DDLE AT (9, 4, 30, 20)

136 VSI Confidential, NDA Required

Screen Mode

DBG> DI SPLAY QUT AT M DDLE

To identify all current window definitions, use the SHOW WINDOW command. To delete a window definition,
use the CANCEL WINDOW command.

7.8. Sample Display Configuration

How to best use screen mode depends on your personal style and on what type of error you are looking for. You
might be satisfied to use the predefined displays. If you have access to a larger screen, you might want to create
additional displays for various purposes. The following example gives some ideas.

Assume you are debugging in a high-level language and are interested in tracing the execution of your program
through several routine calls.

First set up the default screen configuration - that is, SRC in H1, OUT in S45, and PROMPT in S6 (the keypad key
sequence PF4 MINUS gives this configuration). SRC shows the source code of the module in which execution
is paused.

The following command creates a source display named SRC2 in RH1 that shows the PC value at scope 1 (one
level down the call stack, at the call to the routine in which execution is paused):

DBG> DI SPLAY SRC2 AT RH1 SOURCE (EXAM NE/ SOURCE . 1\ %°C)

Thus the left half of your screen shows the currently executing routine and the right half shows the caller of that
routine.

The following command creates a DO display named CALLS at S4 that executes the SHOW CALLS command
each time the debugger gains control from the program:

DBG> DI SPLAY CALLS AT S4 DO (SHOW CALLYS)
Because the top half of OUT is now hidden by CALLS, make OUT's window smaller as follows:

DBG> DI SPLAY QUT AT S5

You can create a similar display configuration with instruction displays instead of source displays.

7.9. Saving Displays and the Screen State

The SAVE command enables you to make a snapshot of an existing display and save that copy as a new display.
This is useful if, for example, you later want to refer to the current contents of an automatically updated display
(such as a DO display).

In the following example, the SAVE command saves the current contents of display CALLS into display CALLS
4, which is created by the command:

DBG> SAVE CALLS AS CALLSA
The new display is removed from the pasteboard. To view its contents, use the DISPLAY command:

DBG> DI SPLAY CALLSA4

The EXTRACT command has two uses. First, it enables you to save the contents of a display in a text file. For
example, the following command extracts the contents of display CALLS, appending the resulting text to the file
COB34. TXT:

DBG> EXTRACT/ APPEND CALLS COB34

Second, the EXTRACT/SCREEN_LAYOUT command enables you to create a command procedure that can
later be executed during a debugging session to re-create the previous state of the screen. In the following example,

VSI Confidential, NDA Required 137

Screen Mode

the EXTRACT/SCREEN_LAYOUT command creates a command procedure with the default specification SYS
$DISK:[[DBGSCREEN.COM. The file contains all the commands needed to re-create the current state of the
screen.

DBG> EXTRACT/ SCREEN_LAYQOUT
#
DBG> @BGSCREEN

Note that you cannot save the PROMPT display as another display, or extract it into a file.

7.10. Changing the Screen Height and Width

During a debugging session, you can change the height or width of your terminal screen. One reason might be
to accommodate long lines that would wrap if displayed across 80 columns. Or, if you are at a workstation, you
might want to reformat your debugger window relative to other windows.

To change the screen height or width, use the SET TERMINAL command. The general effect of the command
is the same whether you are at a VT-series terminal or at a workstation.

In this example, assume you are using a workstation window in its default emulated VT100-screen mode, with a
screen size of 24 lines by 80 columns. You have started the debugger and are using it in screen mode. You now
want to take advantage of the larger screen. The following command increases the screen height and width of the
debugger window to 35 lines and 110 columns respectively:

DBG> SET TERM NAL/ PAGE: 35/ W DTH: 110

By default, all displays are dynamic. A dynamic display automatically adjusts its window dimensions in proportion
when a SET TERMINAL command changes the screen height or width. This means that, when using the SET
TERMINAL command, you preserve the relative positions of your displays. The /[NOJDYNAMIC qualifier on
the DISPLAY command lets you control whether or not a display is dynamic. If a display is not dynamic, it does
not change its window coordinates after you enter a SET TERMINAL command (you can then use the DISPLAY,
MOVE, or EXPAND commands, or various keypad key combinations, to move or resize a display).

To see the current terminal width and height being used by the debugger, use the SHOW TERMINAL command.

Note that the debugger's SET TERMINAL command does not affect the terminal screen size at DCL level. When
you exit the debugger, the original screen size is maintained.

7.11. Screen-Related Built-In Symbols

The following built-in symbols are available for specifying displays and screen parameters in language
expressions:

* %SOURCE_SCOPE - To display source code. %SOURCE_SCOPE is described in Section 7.4.1, “Predefined
Source Display (SRC)”.

* %INST SCOPE - To display instructions. %INST SCOPE is described in Section 7.4.4, “Predefined Instruction
Display (INST)”.

* %PAGE, %WIDTH - To specify the current screen height and width.

* %CURDISP, %CURSCROLL, %NEXTDISP, %NEXTINST, %NEXTOUTPUT, %NEXTSCROLL,
%NEXTSOURCE - To specify displays in the display list.

7.11.1. Screen Height and Width

The built-in symbols %PAGE and %WIDTH return, respectively, the current height and width of the terminal
screen. These symbols can be used in various expressions, such as for window specifications. For example, the
following command defines a window named MIDDLE that occupies a region around the middle of the screen:

138 VSI Confidential, NDA Required

Screen Mode

DBG> SET W NDOW M DDLE AT (%PACGE/ 4, 9YPACE/ 2, 9N DTH 4, %W DTH 2)

7.11.2. Display Built-In Symbols

Each time you refer to a specific display with a DISPLAY command, the display list is updated and reordered, if
necessary. The most recently referenced display is put at the tail of the display list, because that display is pasted
last on the pasteboard (you can identify the display list by entering a SHOW DISPLAY command).

You can use display built-in symbols to specify displays relative to their positions in the display list. These symbols,
listed as follows, enable you to refer to displays by their relative positions in the list instead of by their explicit
names. The symbols are used mainly in keypad key definitions or command procedures.

Display symbols treat the display list as a circular list. Therefore, you can enter commands that use display symbols
to cycle through the display list until you reach the display you want.

%CURDISP The current display. This is the display most recently
referenced with a DISPLAY command - the least
occluded display.

%CURSCROLL The current scrolling display. This is the default

display for the SCROLL, MOVE, and EXPAND
commands, as well as for the associated keypad keys
(KP2, KP4, KP6, and KP8).

%NEXTDISP The next display in the list after the current display.
The next display is the display that follows the
topmost display. Because the display list is circular,
this is the display at the bottom of the pasteboard - the
most occluded display.

%NEXTINST The next instruction display in the display list after
the current instruction display. The current instruction
display is the display that receives the output from the
EXAMINE/INSTRUCTION commands.

%NEXTOUTPUT The next output display in the display list after the
current output display. An output display receives
debugger output that is not already directed to another

display.

%NEXTSCROLL The next display in the display list after the current
scrolling display.

%NEXTSOURCE The next source display in the display list after the

current source display. The current source display is
the display that receives the output from the TYPE
and EXAMINE/SOURCE commands.

7.12. Screen Dimensions and Predefined
Windows

On a VT-series terminal, the screen consists of 24 lines by 80 or 132 columns. On a workstation, the screen is
larger in both height and width. The debugger can accommodate screen sizes up to 100 lines by 255 columns.

The debugger has many predefined windows that you can use to position displays on the screen. In addition to the
full height and width of the screen, the predefined windows include all possible regions that result from:

+ Dividing the screen vertically into equal fractions: halves, thirds, quarters, sixths, or eighths

* Combining vertically contiguous equal fractions: halves, thirds, quarters, sixths, or eighths

VSI Confidential, NDA Required 139

Screen Mode

+ Dividing the vertical fractions into left and right halves
The SHOW WINDOW command identifies all predefined display windows.

The following conventions apply to the names of predefined windows. The prefixes L and R denote left and right
windows, respectively. Other letters denote the full screen (FS) or fractions of the screen height (H: half, T: third,
Q: quarter, S: sixth, E: eighth). The trailing numbers denote specific segments of the screen height, starting from
the top. For example:

* Windows T1, T2, and T3 occupy the top, middle, and bottom thirds of the screen, respectively.
* Window RH2 occupies the right bottom half of the screen.

* Window LQ23 occupies the left middle two quarters of the screen.

» Window S45 occupies the fourth and fifth sixths of the screen.

The following four commands create displays that have windows identical in size and location (the top half of
the screen):

DBG> DI SPLAY XYZ AT H1 SOURCE
DBG> DI SPLAY XYZ AT Q12 SOURCE
DBG> DI SPLAY XYZ AT S123 SOURCE
DBG> DI SPLAY XYZ AT E1234 SOURCE

The horizontal boundaries (start-column, column-count) of the predefined windows for the default terminal screen
width of 80 columns are as follows:

 Left-hand windows: (1, 40)
* Right-hand windows: (42, 39)

Table 7.3, “Predefined Windows” lists the vertical boundaries (start-line, line-count) of single-segment display
windows predefined for the default terminal screen height of 24 lines. Table 7.3, “Predefined Windows” does not
list windows that consist of multiple segments such as E23 (a display window created from the combination of
display windows E2 and E3).

Table 7.3. Predefined Windows

Window Name Start-line, Line-count Window Location
FS (1, 23) Full screen

HI (1, 11) Top half

H2 (13, 11) Bottom half
T1 1,7) Top third

T2 9,7 Middle third
T3 17,7) Bottom third
Q1 (1,5) Top quarter
Q2 (7,5) Second quarter
Q3 (13,5) Third quarter
Q4 (19, 5) Bottom quarter
S1 (1,3) Top sixth

S2 5, 3) Second sixth
S3 9, 3) Third sixth

S4 (13, 3) Fourth sixth

S5 (17, 3) Fifth sixth

140 VSI Confidential, NDA Required

Screen Mode

Window Name Start-line, Line-count Window Location
S6 (21, 3) Bottom sixth

El (1,2) Top eighth

E2 4,2) Second eighth

E3 (7,2) Third eighth

E4 (10, 2) Fourth eighth

E5 (13,2) Fifth eighth

E6 (16, 2) Sixth eighth

E7 (19,2) Seventh eighth

E8 (22,2) Bottom eighth

7.13. Internationalization of Screen Mode

You can enable country-specific features for screen mode by defining logical names, as follows:

» DBGHSMGSHR - For specifying the Screen Management (SMG) shareable image. The debugger uses the SMG
shareable image in its implementation of screen mode. Asian variants of the SMG shareable image handle
multibyte characters. Hence, if an Asian variant of SMG is used by the debugger, the screen mode interface to
the debugger will be able to display and manipulate multibyte characters.

Define the DBGBSMGSHR logical name as follows:

$ DEFI NE/ JOB DBGSSMGSHR
<nane_of _Asi an_SM&>

where <nane_of _Asi an_SM3> varies according to the variants of Asian OpenVMS. For example, the name
of the Asian SMG in Japanese OpenVMS is JSY$SSMGSHR. EXE.

* SMGHDEFAULT_CHARACTER_SET - For the Asian SMG and multibyte characters. This logical need only be
defined if DBGBSMGSHR has been defined. See the documentation on Asian or Japanese screen management
routines for details on how to define this logical name.

VSI Confidential, NDA Required 141

Screen Mode

142 VSI Confidential, NDA Required

Part lll. DECwindows Interface

VSI Confidential, NDA Required 143

144 VSI Confidential, NDA Required

DECwindows Interface

Table of Contents

Chapter 8. INtroductionceeiciveicrseicsserisssnnesssencssssncsssncsssssssssssssssssssssssssssssssssssssssecses 147

8.1, TNETOAUCTION ..evieiiiiiii et ettt et e e e e 147
8.1.1. Convenience FEatUIESeiiuuiiiiiniiiiiiii e 148
8.2. Debugger Windows and IMENUSccuiiuiiiiii it e e 150
8.2.1. Default Window Configurationc..veuiiueiieiie e 150
8.2.2. Main WINAOW ...iiiniiiiiiiiii it ettt e ea e 150
8.2.3. Optional VIews WINAOWooouiiiiiiiiiiiii e 154
8.3. Entering Commands at the Prompt ..o 158
8.3.1. Debugger Commands That Are Not Available in the HP DECwindows Motif for
OPENVMS INEEITACE ...oenieiiee e e e 159
8.4. Displaying Online Help About the Debuggeroooiiiiiiiiiiiiiiiii e 160
8.4.1. Displaying Context-Sensitive Helpc.ooeoiiiiiiiiiiiii e, 160
8.4.2. Displaying the Overview Help Topic and Subtopicc.ceceveiiiiiiiiiiiiniiiineinen. 161
8.4.3. Displaying Help on Debugger Commandscc.oveiiiiiiiniiiiiniiiiniiiineiiieeiieeenen. 161
8.4.4. Displaying Help on Debugger Diagnostic Messagesccuuveeruneriinieiineiiiineeinnennnne. 161
Chapter 9. Starting and Ending a Debugging Sessioncccceveecrverccssneccssencscsercscnnnes 163
9.1. Starting the Kept DebUZEEroouiiiiii e 163
9.2. When Your Program Completes EXECUIONcouiiuiiiiiiiiiieiie e 165
9.3. Rerunning the Same Program from the Current Debugging Sessioncccccoveeuviiiiininan..n. 166
9.4. Running Another Program from the Current Debugging Sessioncoocoviiiiiiiiiiinaenn..n. 166
9.5. Debugging an Already Running Programccoooiiiiiiiiiiiiiii e 166
9.6. Interrupting Program Execution and Aborting Debugger Operationsccceeuieeiieinneennnn.. 167
9.7. Ending a Debugging SESSIONciuutiutiiiii ettt e 167
9.8. Additional Options for Starting the Debuggerccoviiiiiiiiiiii e, 167
9.8.1. Starting the Debugger by Running a Programcooooiiiiiiiiiiiiiiiii 168
9.8.2. Starting the Debugger After Interrupting a Running Programcooiienn. 168
9.8.3. Overriding the Debugger's Default Interfacecoooiiiiiiiiiiiiiiii 169
9.9. Starting the Motif Debug CHEntoouiiiiiiiiii et 172
9.9.1. Software ReqUITEMENtSiiuiitiiiii et 172
0.9.2. Starting the SEIVELeiuiiiii e ettt 172
9.9.3. Primary Clients and Secondary CHENtSc.oeiuiiiiiiiiiiiiiiiiie e 173
9.9.4. Starting the Motif CHEntcoiiiiiiiii e 173
9.9.5. Switching BetWeen SESSIONSueeuiiuiiieiie ettt e e eanae 175
9.9.6. Closing a Clent/Server SESSIONccuueiuneun et e e et et e e e e eans 175
Chapter 10. Using the Debuggereneereeniineenensnenensensnessncsensncssnssanessessacssessess 177
10.1. Displaying the Source Code of Your Programcccoiiiiiiiiiiiiiiii e 177
10.1.1. Displaying the Source Code of Another Routinecoooooiiiiiiiiiiiiiiii, 178
10.1.2. Displaying the Source Code of Another Moduleccooiiiiiiiiiiiiniiii, 179
10.1.3. Making Source Code Available for Displaycc.coviiiiiiiiiiiiiiiiieieeee, 179
10.1.4. Specifying the Location of Source Filesccooiiiiiiiiiiiiiiieee e, 179
10.2. Editing YOUTr Programoouuiiuiiiiiie ettt 180
10.3. Executing YOur Programc.ooouiiiiiiiiii ittt 181
10.3.1. Determining Where Execution Is Currently Pausedccoooiiiiiiiiiiiiinin. 181
10.3.2. Starting or Resuming Program EXecutioncoiiiiiiiiiiiiiiiiiiiii e 181
10.3.3. Executing Your Program One Source Line at a Timeccoeeiiiiiiiiiiiiniinnin... 182
10.3.4. Stepping into a Called ROUtINEooouiiiiiiii e 182
10.3.5. Returning from a Called ROUtINEc.ooouiiiiiiiiiii e 183
10.4. Suspending Execution by Setting Breakpointscooouiiiiiiiiiiiiii i 183
10.4.1. Setting Breakpoints on Source Linesc.oeiuiiiiiiiniiiiiiiiiei e 183
10.4.2. Setting Breakpoints on Routines with Source Browserccooooiiiiiiiiininninn.. 184
10.4.3. Setting an Exception Breakpointcooviiiiiiiiiiiiii e 185
10.4.4. Identifying the Currently Set Breakpointsc.ooiiiiiiiiiiiiiiiiiiiiiieee e 185
10.4.5. Deactivating, Activating, and Canceling Breakpointsccoeeieiiiiiiiiniiiniiann.n. 185

VSI Confidential, NDA Required 145

DECwindows Interface

10.4.6. Setting a Conditional Breakpointcceuiiiiiiiiiiiieiiei e 186
10.4.7. Setting an Action Breakpointcc.viiiiiiiiiiiiiiiiir e 186
10.5. Examining and Manipulating Variablescoiuiiiiiiiiiiiiiiiii e 187
10.5.1. Selecting Variable Names from Windowsccoceoiiiiiiiiiiieiineiineieee e 188
10.5.2. Displaying the Current Value of a Variableccc.ooiiiiiiiniiiniiiniin e, 188
10.5.3. Changing the Current Value of a Variableccooviiiiiiiiiiiniii e, 190
10.5.4. Monitoring @ Variablec.uviineiiiiieiiee ettt 190
10.5.5. Watching @ Variablec..oiiiiiiiiniiii e 192
10.5.6. Changing the Value of a Monitored Scalar Variablecccoooiiiiiiiiiiiiiiin 192
10.6. Accessing Program Variablesoouiiiiiiiiiiiiii e 193
10.6.1. Accessing Static and Nonstatic (Automatic) Variablesccoevviiiiiiiiiiiiinnenn... 193
10.6.2. Setting the Current Scope Relative to the Call Stackccccocoiviiiiiiiiniiiiin, 194
10.6.3. How the Debugger Searches for Variables and Other Symbolsccocoveiiiinn.n. 195
10.7. Displaying and Modifying Values Stored in RegiSterscoceeuiiiiiiiiiiiniiiiniiiiniiiniciee, 195
10.8. Displaying the Decoded Instruction Stream of Your Programc...ccooviiiiiiiiniiinncin. 196
10.9. Debugging Tasking (Multithread) Programscccoeeuiiiiiiniiiiiniiiinii e 197
10.9.1. Displaying Information About Tasks (Threads)cccooviiiiiiiiiiiiniiiniee, 197
10.9.2. Changing Task (Threads) CharacteriStiCsceuuuvieuureirineiiineiiieeiireeiieeiineennnn 198
10.10. Customizing the Debugger's HP DECwindows Motif for OpenVMS Interface 198
10.10.1. Defining the Startup Configuration of Debugger VIEewsccevieiiniiiiniiinnnennn... 199
10.10.2. Displaying or Hiding Line Numbers inSource View and Instruction View 199
10.10.3. Modifying, Adding, Removing, and Resequencing Push Buttonsc.......... 200
10.10.4. Editing the Debugger Resource Fileccoooiiiiiiiiiiiiiiiiieeeee e 202
10.11. Debugging Detached ProCESSESviiuiniiiiniiiiiiiineiiie e 208

146

VSI Confidential, NDA Required

Introduction

Chapter 8. Introduction

This chapter introduces the HP DECwindows Motif for OpenVMS user interface of the debugger. For information
about the command interface, see Part II, “Command Interface”.

Note

The HP DECwindows Motif for OpenVMS user interface to the OpenVMS Debugger Version 7.1 or later requires
Version 1.2 or later of HP DECwindows Motif for OpenVMS.

This chapter provides the following information:

* A functional overview of the OpenVMS Debugger, including its user interface options - HP DECwindows Motif
for OpenVMS and command (Section 8.1, “Introduction’)

* An orientation to the debugger's HP DECwindows Motif for OpenVMS screen features, such as windows,
menus, and so on (Section 8.2, “Debugger Windows and Menus™)

* Instructions for entering debugger commands at the command-entry prompt (Section 8.3, “Entering Commands
at the Prompt™)

* Instructions for accessing online help(Section 8.4, “Displaying Online Help About the Debugger”)

For information about starting a debugging session, see Chapter 9, Starting and Ending a Debugging Session.For
detailed information about using the Motif interface for debugging, see Chapter 10, Using the Debugger.For
the source code of program El GHTQUEENS. EXE, shown in the figures of this chapter, see Appendix D,
EIGHTQUEENS.C.

8.1. Introduction

The OpenVMS Debugger has a HP DECwindows Motif for OpenVMS graphical user interface (GUI) for
workstations. This enhancement to the screen-mode command interface accepts mouse input to choose items from
menus and to activate or deactivate push buttons, to drag the pointer to select text in windows, and so on. The
debugger's HP DECwindows Motif for OpenVMS GUI menus and push buttons provide the functions for most
basic debugging tasks.

The HP DECwindows Motif for OpenVMS GUI is layered on the character-cell command interface and has
a command-entry prompt on the command line (in the command view). From the HP DECwindows Motif for
OpenVMS GUI command line, you can enter debugger commands for the following purposes:

* To perform certain operations by using the HP DECwindows Motif for OpenVMS user interface menus and
push buttons for certain operations

» To do debugging tasks not available through the HP DECwindows Motif for OpenVMS GUI menus and push
buttons

You can customize the HP DECwindows Motif for OpenVMS GUI to associate other debugger commands with
new or existing push buttons.

You can run the HP DECwindows Motif for OpenVMS GUI in local mode or in client/server mode. Client/server
mode allows you to debug programs remotely from another OpenVMS node. The user interface in both Motif
modes is virtually identical. Chapter 9, Starting and Ending a Debugging Session describes how to start interfaces.

Notes

The HP DECwindows Motif for OpenVMS GUI does not recognize the HELP command at its command-entry
prompt. Choose the On Commands item in the Help menu for online help on debugger commands.

VSI Confidential, NDA Required 147

Introduction

You cannot use the HP DECwindows Motif for OpenVMS GUI to debug detached processes such as print
symbionts that run without a command line interpreter (CLI).See Section 1.11, “Debugging Detached Processes
That Run with No CLI”for details about debugging detached processes that do not have a CLI.

8.1.1. Convenience Features

The following paragraphs highlight some of the convenience features of the debugger's default HP DECwindows
Motif for OpenVMS interface. Section 8.2, “Debugger Windows and Menus” gives visual details. (Convenience
features of the debugger's command interface are described in detail in Section 1.1.2, “Convenience Features”.)

Source-Code Display

The OpenVMS Debugger is a source-level debugger. The debugger displays in the source viewthe source code
that surrounds the instruction where program execution is paused currently. You can enable and disable the display
of compiler-generated line numbers.

A source browser lets you:

 List the images, modules, and routines of your program

* Display source code from selected modules or routines
 Display the underlying hierarchy of modules and routines

 Set breakpoints by double-clicking on selected routines

Call-Stack Navigation

The call-stack menu on the main window lists the sequence of routine calls currently on the call stack. Click on a
routine name in the call-stack menu to set (to that routine) the context (scope) for

» Source code display (in the source view)
* Register display (in the register view)
* Instruction display (in the instruction view)

» Symbol searches

Breakpoints

You set, activate, and deactivate breakpoints by clicking on buttons next to the source lines in the source view or
the instruction view. Optionally, you can set, deactivate, or activate breakpoints by selecting items in window pull-
down menus, pop-up menus, context-sensitive menus, or dialog boxes. You can set conditional breakpoints, which
suspend program execution if the specified condition is true. You can set action breakpoints, which execute one
or more debugger commands when the breakpoint suspends program execution. The main window push buttons,
the instruction view push buttons, and the breakpoint view give a visual indication of activated, deactivated, and
conditional breakpoints.

Push Buttons

Push buttons in the push button view control common operations:by clicking on a push button, you can start
execution, step to the next source line, display the value of a variable selected in a window, interrupt execution,
and so on.

You can modify, add, remove, and resequence push buttons and the associated debugger commands.

Context-Sensitive Pop-Up Menus

Context-sensitive pop-up menus list common operations associated with your view (source view, command view,
and so on.)When you click MB3, the pop-up menu lists actions for the text you have selected, the source line at
which you are pointing, or the view in which you are working.

148 VSI Confidential, NDA Required

Introduction

Displaying and Manipulating Data

To display the value of a variable or expression, select the variable or expression in the source view and click
on a push button, such as Examine (examine variable). You can also display selected values by choosing items
from window pull-down menus(such as Examine, in the Commands pull-down menu), context-sensitive menus,
or dialog boxes. You can display values in different type or radix formats.

To change the value of a variable, edit the currently displayed value in the monitor view. You can also change values
by selecting items in window pull-down menus (such as Deposit, in the Commands pull-down menu), context-
sensitive pop-up menus, or dialog boxes.

The monitor view displays the updated values of specified variables whenever the debugger regains control from
your program.

Kept Debugger RERUN Command

You can run the debugger in a state known as the kept debugger from which you can rerun the same program or
run another program without exiting the debugger. When rerunning a program, you can choose to save the current
state of breakpoints, tracepoints, and static watch points. The kept debugger is also available in the screen mode
debugger. See Section 9.1, “Starting the Kept Debugger” for information on starting the kept debugger.

Client/Server Configuration

You can run the debugger in a client/server configuration, which allows you to debug programs that run on
an OpenVMS node remotely from another OpenVMS node using the HP DECwindows Motif for OpenVMS
interface, or from a PC using the Microsoft Windows interface. Up to 31 debug clients can simultaneously access
the same debug server, which allows many debugging options.

Instruction and Register Views

The instruction view shows the decoded instruction stream (the code that is actually executing) of your program.
This view is useful if the program you are debugging has been optimized by the compiler, in which case the source
code in the source view may not reflect the code that is executing. You can set breakpoints on instructions and
display the memory addresses and source-code line numbers associated with each instruction.

The register view displays the current contents of all machine registers. You can edit the displayed values to deposit
other values into the registers.

Debugger Status Indicator
The debugger has a status indicator to identify the state of the debugger, which can be one of the following:
* D -- the program being debugged is running

* U -- the Debugger is executing a user command

Threads Program Support

The threads view displays information about the current state of all tasks of a multithread program. You can modify
threads characteristics to control thread execution, priority, state transitions, and so on.

Integration with Command Interface

The debugger's HP DECwindows Motif for OpenVMS GUI is an enhancement to the character-cell debugger. It
is layered on, and closely integrated with, the command-driven character-cell debugger:

* When you use the HP DECwindows Motif for OpenVMS GUI menus and push buttons, the debugger echoes
your commands in the command view to provide a record of your actions.

* When you enter commands at the prompt, the debugger updates the HP DECwindows Motif for OpenVMS
views accordingly.

VSI Confidential, NDA Required 149

Introduction

Integration with Source-Level Editor

You can edit program source code without exiting from the debugger. In the editor view, you can display the source
code, search and replace text, or add additional text. Editor view text buffers allow you to move quickly back and
forth between new or existing files, and copy, cut, and paste text from buffer to buffer.

The text editor available through the debugger's HP DECwindows Motif for OpenVMS menu interface is a simple
convenience feature, not intended to replace sophisticated text editors such as the Language-Sensitive Editor
(LSE). To use a different editor, enter the Edit command at the DBG> prompt in the command view (see the EDIT
command).

Customization

You can modify the following and other aspects of the debugger's HP DECwindows Motif for OpenVMS interface
and save the current settings in a resource file to customize your debugger start up environment:

» Configuration of windows and views (for example, size, screen location, order)
 Push button order, labels, and associated debugger commands (this includes adding and removing push buttons)

* Character fonts for displayed text

Online Help

Online help is available for the debugger's HP DECwindows Motif for OpenVMS interface(context-sensitive help)
and for its command interface.

8.2. Debugger Windows and Menus

The following sections describe the debugger windows, menus, views, and other features of the OpenVMS
Debugger HP DECwindows Motif for OpenVMS interface.

8.2.1. Default Window Configuration

By default, the debugger starts up in the main window, as shown in Figure 8.1, “Debugger Main Window”.

When you start the debugger as explained in Section 9.1, “Starting the Kept Debugger”, the source view is initially
empty. Figure 8.1, “Debugger Main Window”’shows the source view after a program has been brought under
debugger control (by directing the debugger to run a specific image, in this example, EIGHTQUEENS).

You can customize the startup configuration to your preference as described in Section 10.10.1, “Defining the
Startup Configuration of Debugger Views”.

Figure 8.1. Debugger Main Window

Placeholder
for images

8.2.2. Main Window

The main window (see Figure 8.1, “Debugger Main Window”) includes:
« Title bar (see Section 8.2.2.1, “Title Bar”)

* Source view (see Section 8.2.2.2, “Source View”)

150 VSI Confidential, NDA Required

Introduction

 Call Stack view (see Section 8.2.2.4, “Call Stack Menu™)
* Push button view (see Section 8.2.2.5, “Push Button View”)
» Command view (see Section 8.2.2.6, “Command View)

If the debugger is running on an Alpha or Integrity server processor, the name of the debugger is "OpenVMS
Debug64."

8.2.2.1. Title Bar

The title bar, at the top of the main window, displays (by default) the name of the debugger, the name of the
program being debugged, and the name of the source code module that is currently displayed in the source view.

8.2.2.2. Source View

The source view shows the following:

» Source code of the program you are debugging and, by default, the compiler-generated line numbers (to the
left of the source code). To choose not to display line numbers, see Section 10.1, “Displaying the Source Code
of Your Program”.

* Breakpoint toggle push buttons.

 Current-location pointer (a triangle to the left of breakpoint push buttons), which points to the line of source
code that will be executed when program execution resumes.

For more information about displaying source code, see Section 8.2.2.3, “Menus on Main Window” and
Section 10.1, “Displaying the Source Code of Your Program”.

8.2.2.3. Menus on Main Window

Figure 8.2, “Menus on Main Window” and Table 8.1, “Menus on Main Window” describe the menus on the main
window.

Figure 8.2. Menus on Main Window

Placeholder
for images

Table 8.1. Menus on Main Window

Menu Item Description
File Run Image... Bring a program under debugger control by specifying an
executable image.
Run Foreign Command... Bring a program under debugger control by specifying a symbol
for a foreign command.
Rerun Same... Rerun the same program under debugger control.
Browse Sources Display the source code in any module of your program. Set

breakpoints on routines.

» Symbolic -- List only those modules for which the debugger
has symbolic information.

VSI Confidential, NDA Required 151

Introduction

Menu

Item

Description

« All -- List all modules.

Display Line Numbers

Display or hide line numbers in the source view.

Server Connection...

(Client/Server mode)Specify the network binding string of the
server for connection.

Exit Debug?

End the debugging session, terminating the debugger.

Edit

Cut

Cut selected text and copy it to the clipboard. You can cut text
only from fields or regions that accept input (although, in most
cases, Cut copies the selected text to the clipboard).

Copy

Copy selected text from the window to the clipboard without
deleting the text.

Paste

Paste text from the clipboard to a text-entry field or region.

Break

On Exception

Break on any exception signaled during program execution.

Activate All

Activate any previously set breakpoints.

Deactivate All

Deactivate any previously set breakpoints.

Cancel All

Remove all breakpoints from the debugger's breakpoint list and
from the breakpoint view.

Set...

Set a new breakpoint, optionally associated with a particular
condition or action, at a specified location.

Commands

Examine...

Examine the current value of a variable or expression. The output
value may be typecast or changed in radix.

Deposit...

Deposit a value to a variable. The input value may be changed in
radix.

Edit File

Edit the source code of your file in the debugger's editor.

Options

Views...

Display one or more of the following:

Breakpoint view

Monitor view

Instruction view

Tasking view

Register view (see Table 8.2, “Displays in Register View”)

Track Language Changes

Notify you if the debugger enters a module that is written in a
language different from the previously executed module.

Show Message Separators

Display a dotted line between each command and message
displayed by the debugger.

Customize Buttons...

Modify, add, remove, or resequence a push button in the push
button view and the associated debugger command.

Save Options

Save the current settings of all HP DECwindows Motif for
OpenVMS features of the debugger that you can customize
interactively, such as the configuration of windows and views,
and push button definitions. This preserves the current debugger
configuration for the next time you run the debugger.

Restore Default Options

Copy the system default debugger resource file DECW
$SYSTEM DEFAULTS: VMSDEBUG. DAT to the user-specific
resource file DECWSUSER DEFAULTS: VMSDEBUG. DAT. The
default options take effect when you next start the debugger.

Edit Options File

Load and display the user-specific resource file DECW
$USER _DEFAULTS: VMSDEBUG. DAT in the debug editor for
review and modification.

152

VSI Confidential, NDA Required

Introduction

Menu Item Description
Help On Context Enable the display of context-sensitive online help.
On Window Display information about the debugger.
On Help Display information about the online help system.
On Version Display information about this version of the debugger.
On Commands Display information about debugger commands.

Table 8.2. Displays in Register View

Register Type Alpha Displays Integrity Server Displays
Call Frame RO, R25, R26, R27, FP, SP, FO, F1, |PC, CFM, BSP, BSPSTORE, PFS,
PC, PS, FPCR, SFPCR RP, UNAT, GP, SP, TP, Al
General Purpose R0-R28, FP, SP, R31 PC, GP, R2-R11, SP, TP, R14-R24,
Al R26-R127
Floating Point FO-F31 F2 -F127

8.2.2.4. Call Stack Menu

The Call Stack menu, between the source view and the push button view, shows the name of the routine whose
source code is displayed in the source view. This menu lists the sequence of routine calls currently on the stack and
lets you set the scope of source code display and symbol searches to any routine on the stack (see Section 10.6.2,
“Setting the Current Scope Relative to the Call Stack”).

8.2.2.5. Push Button View

Figure 8.3, “Default Buttons in the Push Button View Table” and Table 8.3, “Default Buttons in the Push Button
View”describe the default push buttons in the main window. You can modify, add, remove, and resequence
buttons and their associated commands as explained in Section 10.10.3, “Modifying, Adding, Removing, and
Resequencing Push Buttons”.

Figure 8.3. Default Buttons in the Push Button View Table

Placeholder
for images

Table 8.3. Default Buttons in the Push Button View

Button Description

Stop Interrupt program execution or a debugger operation without ending the debugging
session.

Go Start or resume execution from the current program location.

STEP Execute the program one step unit of execution. By default, this is one executable line of

source code.

S/in When execution is suspended at a routine call statement, move execution into the called
routine just past the start of the routine. This is the same behavior as STEP if not at a
routine call statement.

S/ret Execute the program directly to the end of the current routine.

S/call Execute the program directly to the next Call or Return instruction.

VSI Confidential, NDA Required 153

Introduction

Button Description

EX Display, in the command view, the current value of a variable whose name you have
selected in a window.

E/az Display, in the command view, the current value of a variable whose name you have
selected in a window. The variable is interpreted as a zero-terminated ASCII string.

E/ac Display, in the command view, the current value of a variable whose name you have
selected in a window. The variable is interpreted as a counted ASCII string preceded by
a one-byte count field that contains the length of the string.

EVAL Display, in the command view, the value of a language expression in the current
language (by default, the language of the module containing the main program).

MON Display, in the monitor view, a variable name that you have selected in a window and

the current value of that variable. Whenever the debugger regains control from your
program, it automatically checks the value and updates the displayed value accordingly.

8.2.2.6. Command View

The command view, located directly under the push button view in the main window, accepts typed command
input on the command line (see Section 8.3, “Entering Commands at the Prompt™), and displays debugger output
other than that displayed in the optional views. Examples of such output are:

* The result of an Examine operation.

» Diagnostic messages. For online help on debugger diagnostic messages, see Section 8.4.4, “Displaying Help
on Debugger Diagnostic Messages”.

* Command echo. The debugger translates your HP DECwindows Motif for OpenVMS menu and push button
input into debugger commands and displays those commands on the command line in the command view,
providing a record of your most recent commands. This enables you to correlate your input with debugger

actions.

You can clear the entire command view, leaving only the current command-line prompt, by choosing Clear
Command Window from the pop-up menu.

You can clear the current command line by choosing Clear Command Line from the pop-up menu.

8.2.3. Optional Views Window

Table 8.4, “Optional Views” lists the optional views. They are accessible by choosing Views... from the Options
menu on the main window.

Table 8.4. Optional Views

View

Description

Breakpoint view

List all breakpoints that are currently set and identify
those which are activated, deactivated, or qualified
as conditional breakpoints. The breakpoint view also
allows you to modify the state of each breakpoint.

Monitor view

List variables whose values you want to monitor

as your program executes. The debugger updates

the values whenever it regains control from your
program (for example, after a step or at a breakpoint).
Alternatively, you can set a watchpoint, causing
execution to stop whenever a particular variable has
been modified. You can also change the values of
variables.

154

VSI Confidential, NDA Required

Introduction

Description
View

Instruction view Display the decoded instruction stream of your
program and allow you to set breakpoints on
instructions. By default, the debugger displays the
corresponding memory addresses and source-code line
numbers to the left of the instructions. You can choose
to suppress these.

Register view Display the current contents of all machine registers.
The debugger updates the values whenever it regains
control from your program. The register view also lets
you change the values in registers.

Tasking view List all the existing (non terminated) tasks of a tasking
program. Provides information about each task and
allows you to modify the state of each task.

Figure 8.5, “Monitor, Breakpoint, and Register Views” shows a possible configuration of the breakpoint view,
monitor view, and register view, as a result of the selections in the View menu in Figure 8.4, “Debugger Main
Window and the Optional Views Window”.

Figure 8.6, “Instruction View” shows the instruction view, which is a separate window so that you can position it
where most convenient. Figure 8.7, “Thread View” shows the tasking view.

Note that the registers and instructions displayed are system-specific. Figure 8.5, “Monitor, Breakpoint, and
Register Views” and Figure 8.6, “Instruction View” show Integrity server-specific registers and instructions.

You can move and resize all windows. You can also save a particular configuration of the windows and views so that
it is set up automatically when you restart the debugger (see Section 10.10.1, “Defining the Startup Configuration
of Debugger Views”).

Note

If you are debugging a Ul application and you have many debugger windows overlapping the user program's
windows, the X server will occasionally abruptly terminate the user program.

To avoid this problem, refrain from overlapping or covering windows belonging to the user program.

Figure 8.4. Debugger Main Window and the Optional Views Window

Placeholder
for images

Figure 8.5. Monitor, Breakpoint, and Register Views

Placeholder
for images

VSI Confidential, NDA Required 155

Introduction

Figure 8.6. Instruction View

Placeholder
for images

Figure 8.7. Thread View

Placeholder
for images

8.2.3.1. Menus on Optional Views Window

Figure 8.8, “Menus on Optional Views Window” and Table 8.5, “Menus on Optional Views Window” describe
the menus on the optional views window.

Figure 8.8. Menus on Optional Views Window

Placeholder
for images

Table 8.5. Menus on Optional Views Window

Menu Item Description
File Close Close the optional views window.
Exit Debug? End the debugging session,
terminating the debugger.
Break On Exception Break on any exception signaled
during program execution.
Activate All Activate any previously set
breakpoints.
Deactivate All Deactivate any previously set
breakpoints.
Cancel All Remove all breakpoints from the

debugger's breakpoint list and from
the breakpoint view.

Toggle Toggle a breakpoint.

Set/Modify... Set a new breakpoint, optionally
associated with a particular

156 VSI Confidential, NDA Required

Introduction

Menu

Item

Description

condition or action, at a specified
location.

Cancel

Cancel (delete) an individual
breakpoint.

Monitor

Expand

Expand monitor view output to
include the values of component
parts of a selected item as well as
the aggregate value.

Collapse

Collapse the monitor view output to
show only the aggregate value of a
selected item, instead of the values
of each component part.

Deposit...

Change the value of a monitored
element.

Toggle Watchpoint

Toggle a selected watchpoint.

Typecast

Use the submenu to typecast output
for a selected variable to int, long,
quad, short, or char*.

Change Radix

Use the submenu to change the
output radix for a selected variable
to hex, octal, binary, or decimal.

Change All Radix

Use the submenu to change the
output radix for all subsequent
monitored elements to hex, octal,
binary, or decimal.

Remove

Remove an element from the
monitor view.

Register

Change Radix

Use the submenu to change radix
for selected register to hex, octal,
binary, or decimal.

Change All Radix

Use the submenu to change radix
for all registers to hex, octal, binary,
or decimal.

Tasks

Abort

Request that the selected task be
terminated at the next allowed
opportunity.

Activate

Make the selected task the active
task.

Hold

Place the selected task on hold.

No hold

Release the selected task from hold.

Make Visible

Make the selected task the visible
task.

All

Use the submenu to abort all tasks
or release all tasks from hold.

Options

Views...

Display one or more of the
following:

Breakpoint view
Monitor view
Instruction view

VSI Confidential, NDA Required

157

Introduction

Menu

Item

Description

Tasking view
Register view

Customize Buttons...

Modify, add, remove, or resequence
a push button in the push button
view and the associated debugger
command.

Save Options

Save the current settings of all HP
DECwindows Motif for OpenVMS
features of the debugger that you
can customize interactively, such as
the configuration of windows and
views, and push button definitions.
This preserves your current
debugger configuration for the next
time you run the debugger.

Restore Default Options

Copy the system default
debugger resource file DECW
$SYSTEM DEFAULTS: VVSDEBUC
to the user-specific
resource file DECW
$USER_DEFAULTS: VMSDEBUG. [
The default options take effect
when you next start the debugger.

b DAT

DAT.

Edit Options File

Load and display the user-
specific resource file DECW
$USER _DEFAULTS: VIVSDEBUG. [0
in the debug editor for review and
modification.

DAT

Help

On Context

Enable the display of context-
sensitive online help.

On Window

Display information about the
debugger.

On Help

Display information about the
online help system.

On Version

Display information about this
version of the debugger.

On Commands

Display information about debugger
commands.

8.3. Entering Commands at the Prompt

The debugger's HP DECwindows Motif for OpenVMS GUI is layered on the command interface. The command
line, the last line in the command view and identified by the command-entry prompt (DBG>), lets you enter
debugger commands for the following purposes:

* As an alternative to using the HP DECwindows Motif for OpenVMS GUI menus and push buttons for certain

operations

* To do debugging tasks not available through the HP DECwindows Motif for OpenVMS GUI pull-down menus

and push buttons

Figure 8.9, “Entering Commands at the Prompt” shows the RUN command in the command view.

158

VSI Confidential, NDA Required

Introduction

Figure 8.9. Entering Commands at the Prompt

Placeholder
for images

When you use the HP DECwindows Motif for OpenVMS interface pull-down menus and push buttons, the
debugger translates your input into debugger commands and echoes these commands on the command line so that
you have a record of your commands. Echoed commands are visually indistinguishable from commands that you
enter explicitly on the command line.

For information about the debugger's command interface, see Part 11, “Command Interface”. For online help about
the commands, see Section 8.4.3, “Displaying Help on Debugger Commands”.

In addition to entering debugger commands interactively at the prompt, you can also place them in debugger
initialization files and command files for execution within the HP DECwindows Motif for OpenVMS environment.

You can also take advantage of the keypad support available at the command-entry prompt. (This support is a
subset of the more extensive keypad support provided for the command interface, which is described in Appendix
A.) The commands in Table 8.6, “Keypad Definitions in the HP DECwindows Motif for OpenVMS Debugger
Interface”are mapped to individual keys on your computer keypad.

Table 8.6. Keypad Definitions in the HP DECwindows Motif for OpenVMS Debugger
Interface

Command Corresponding Key
Step/Line KPO

Step/Into GOLD-KP0
Step/Over BLUE-KPO
Examine KP1

Examine” GOLD-KP1

Go KP,

Show Calls KP5

Show Calls 3 GOLD-KP5

To enter one of these commands, press the key or keys indicated, followed by the Enter key on the keypad. (The
GOLD key is PF1; the BLUE key is PF4.)

For information on changing these key bindings, or binding commands to unassigned keys on the keypad, see
Section 10.10.4.4, “Defining the Key Bindings on the Keypad”.

8.3.1. Debugger Commands That Are Not Available in
the HP DECwindows Motif for OpenVMS Interface

Table 8.7, “Debugger Commands Not Available in the HP DECwindows Motif for OpenVMS User Interface”
lists the debugger commands that are disabled in the debugger's HP DECwindows Motif for OpenVMS interface.
Many of them are relevant only to the debugger's screen mode.

VSI Confidential, NDA Required 159

Introduction

Table 8.7. Debugger Commands Not Available in the HP DECwindows Motif for
OpenVMS User Interface

ATTACH SELECT
CANCEL MODE (SET, SHOW) ABORT KEY
CANCEL WINDOW (SET, SHOW) KEY
DEFINE/KEY (SET, SHOW) MARGINS
DELETE/KEY SET MODE [NOJKEYPAD
DISPLAY SET MODE [NOJSCREEN
EXAMINE/SOURCE SET MODE [NO]JSCROLL
EXPAND SET OUTPUT [NOJTERMINAL
EXTRACT (SET, SHOW) TERMINAL
HELP ' (SET, SHOW) WINDOW
MOVE (SET, CANCEL) DISPLAY
SAVE SHOW SELECT

SCROLL SPAWN

1Help on commands is available from the Help menu in a debugger window.

The debugger issues an error message if you enter any of these commands on the command line, or if the debugger
encounters one of these commands while executing a command procedure.

8.4. Displaying Online Help About the
Debugger

The following types of online help about the debugger and debugging are available during a debugging session:
* Context-sensitive help - information about an area or object in a window or dialog box

» Task-oriented help - consists of an introductory help topic named Overview of the Debugger and several
subtopics on specific debugging tasks

* Help on debugger commands and various topics, such as language support
» Help on debugger diagnostic messages

Task-oriented topics related to context-sensitive topics are connected through the list of additional topics in the
help windows.

8.4.1. Displaying Context-Sensitive Help

Context-sensitive help is information about an area or object in a window or a dialog box.
To display context-sensitive help:

1. Choose On Context from the Help menu in a debugger window. The pointer shape changes to a question mark

(?).
2. Place the question mark on an object or area in a debugger window or dialog box.

3. Click MBI1. Help for that area or object is displayed in a Help window. Additional topics provide task-oriented
discussions, where applicable.

To display context-sensitive help for a dialog box, you can also click on the Help button in the dialog box.

160 VSI Confidential, NDA Required

Introduction

Note

Chapter 12, Using the Heap Analyzer , which is organized by task, explains how to use the debugger's Heap
Analyzer.

You cannot obtain true context-sensitive help about any push button other than Stop. This is because all other
buttons can be modified or removed.

8.4.2. Displaying the Overview Help Topic and
Subtopic

The Overview help topic (Overview of the Debugger) and its subtopics provide task-oriented information about
the debugger and debugging.

To display the Overview topic, use either of these techniques:
* Choose On Window from the Help menu in a debugger window.
* Choose Go To Overview from the View menu of a debugger help window.

To display information about a particular topic, choose it from the list of additional topics.

8.4.3. Displaying Help on Debugger Commands

To display help on debugger commands:
1. Choose On Commands from the Help menu of a debugger window.
2. Choose the command name or other topic (for example, Language Support) from the list of additional topics.

Note that the Help command is not available through the command line interface in the command view.

8.4.4. Displaying Help on Debugger Diagnostic
Messages

Debugger diagnostic messages are displayed in the command view. To display help on a particular message:
1. Choose On Commands from the Help menu of a debugger window.
2. Choose Messages from the list of additional topics.

3. Choose the message identifier from the list of additional topics.

VSI Confidential, NDA Required 161

Introduction

162 VSI Confidential, NDA Required

Starting and Ending
a Debugging Session

Chapter 9. Starting and Ending a
Debugging Session

This chapter explains how to:
« Start the debugger (Section 9.1, “Starting the Kept Debugger”)
+ Continue when your program completes execution (Section 9.2, “When Your Program Completes Execution’)

* Rerun the same program from the current debugging session (Section 9.3, “Rerunning the Same Program from
the Current Debugging Session”)

* Run another program from the current debugging session (Section 9.4, “Running Another Program from the
Current Debugging Session”)

* Interrupt program execution and debugger operations (Section 9.6, “Interrupting Program Execution and
Aborting Debugger Operations™)

* End a debugging session (Section 9.7, “Ending a Debugging Session”)

» Start the debugger in additional ways for specific purposes (Section 9.8, “Additional Options for Starting the
Debugger”)

* Debug a program already running in a subprocess or detached process (Section 9.5, “Debugging an Already
Running Program”)

9.1. Starting the Kept Debugger

This section explains the most common way to start the debugger from DCL level ($) and bring your program
under debugger control. Section 9.8, “Additional Options for Starting the Debugger” explains optional ways to
start the debugger.

Starting the kept debugger as explained here enables you to use the Connect (see Section 9.5, “Debugging an
Already Running Program”), Rerun (see Section 9.3, “Rerunning the Same Program from the Current Debugging
Session”), and Run (see Section 9.4, “Running Another Program from the Current Debugging Session”) features.

To start the debugger and bring your program under debugger control:

1. Verify that you have compiled and linked the program as explained in Section 1.2, “Preparing an Executable
Image for Debugging”.

2. Enter the following command line:
$ DEBUG KEEP

By default, the debugger starts up as shown in Figure 9.1, “Debugger at Startup”. The main window remains
empty until you bring a program under debugger control (Step 4). Upon startup, the debugger executes any
user-defined initialization file (see Section 13.2, “Using a Debugger Initialization File”).

Figure 9.1. Debugger at Startup

Placeholder
for images

VSI Confidential, NDA Required 163

Starting and Ending
a Debugging Session

3. Bring your program under debugger control using one of the following three techniques:

* Ifthe program is already running in a subprocess or detached process, use the CONNECT command to bring
the program under debugger control. See Section 9.5, “Debugging an Already Running Program”.

* Run a specified image (this is the most common technique):

a. Choose Run Image... from the File menu on the main window. The Run Image dialog lists the executable
images in your current directory (see Figure 9.2, “Running a Program by Specifying an Image”).

b. Click on the name of the image to be debugged. The Image: field displays the image name.
c. Ifapplicable, enter arguments to be passed to the program in theArguments: field. If you specify a quoted
string, you might have to add quotation marks because the debugger strips quotation marks when parsing

the string.

d. Click on OK.

Figure 9.2. Running a Program by Specifying an Image

Placeholder
for images

* Run an image by specifying a DCL command or a symbol for a foreign command:

a. Choose Run Foreign Command... from the File menu on the main window. The Run Foreign Command
dialog is displayed (see Figure 9.3, “Running a Program by Specifying a Command Symbol”).

b. Enter the symbol in the Foreign Command: field (such a symbol can provide a shortcut around the
directory and file selection process). The foreign command X1, shown in Figure 9.3, “Running a Program
by Specifying a Command Symbol”, has been previously defined:
$X1 :== RUN MYDI SK: [MYDI R. MYSUBDI R] El GHTQUEENS. EXE

c. Enter any arguments to be passed with the command in the Arguments: field.

d. Click on OK.

Figure 9.3. Running a Program by Specifying a Command Symbol

Placeholder
for images

Once the debugger has control of the program, the debugger:
» Displays the program's source code in the main window, as shown in Figure 9.4, “Source Display at Startup”.

» Suspends execution at the start of the main program. The current-location pointer to the left of the source code
shows which line of code will be executed next.

164 VSI Confidential, NDA Required

Starting and Ending
a Debugging Session

Figure 9.4. Source Display at Startup

Placeholder
for images

The message displayed in the command view indicates that this debugging session is initialized for a C program
and that the name of the source module is EIGHTQUEENS.

With certain programs, the debugger sets a temporary breakpoint to suspend program execution at the start of some
initialization code, before the main program, and displays the following message:

Type GO to reach MAIN program
No source |ine for address: nnnnnnnn

With some of these programs (for example, Ada programs), the breakpoint enables you to debug the initialization
code using full symbolic information.The initialization sets up language-dependent debugger parameters. These
parameters control the way the debugger parses names and expressions, formats debugger output, and so on.
You can now debug your program as explained in Chapter 10, Using the Debugger.

Note the following restrictions about running a program under debugger control:

* You cannot use the procedure in this section to connect the debugger to a running program (see Section 9.8.2,
“Starting the Debugger After Interrupting a Running Program™).

* To run a program under debugger control over a network link, you must use the debugger client/server interface.
See Section 9.9, “Starting the Motif Debug Client” for more information.

If you try to run a program that does not exist, or misspell the name of a program that does exist, the following
error messages are displayed in the DEC term window, rather than in the command view:

9%OCL- W ACTI MAGE, error activating inage-CLI-E-1MAGEFNF, image file not
f ound

9.2. When Your Program Completes
Execution

When your program completes execution normally during a debugging session, the debugger issues the following
message:

"Normal successful conpletion'
You then have the following options:

* You can rerun your program from the same debugging session (see Section 9.3, “Rerunning the Same Program
from the Current Debugging Session”).

* You can run another program from the same debugging session (see Section 9.4, “Running Another Program
from the Current Debugging Session”™).

* You can end the debugging session (see Section 9.7, “Ending a Debugging Session”).

VSI Confidential, NDA Required 165

Starting and Ending
a Debugging Session

9.3. Rerunning the Same Program from the
Current Debugging Session

When running the kept debugger (see Section 9.1, “Starting the Kept Debugger”), you can rerun the program
currently under debugger control at any time during a debugging session.

To rerun the program:

1. Choose Rerun Same... from the File menu on the main window. The Rerun dialog is displayed (see Figure 9.5,
“Rerunning the Same Program”).

2. Enter any arguments to be passed to the program, if required, in the Arguments: field. If you specify a quoted
string, you might have to add quotation marks because the debugger strips quotation marks when parsing the
string.

3. Choose whether or not to keep the current state of any breakpoints, tracepoints, or static watchpoints that you
previously set, activated, or deactivated(see Section 10.4, “Suspending Execution by Setting Breakpoints” and
Section 10.5.5, “Watching a Variable”). Nonstatic watchpoints might or might not be saved, depending on the
scope of the variable being watched relative to the main program unit (where execution restarts).

4. Click on OK.

Figure 9.5. Rerunning the Same Program

Placeholder
for images

When you rerun a program, it is in the same initial state as a program that is brought under debugger control as
explained in Section 9.1, “Starting the Kept Debugger”, except for any saved breakpoints, tracepoints, or static
watchpoints. The source display and current location pointer are updated accordingly.

When you rerun a program, the debugger uses the same version of the image that is currently under debugger
control. To debug a different version of that program (or a different program) from the same debugging session,
choose Run Image... or Run Foreign Command.. from the File menu on the main window (see Section 9.1, “Starting
the Kept Debugger”).

9.4. Running Another Program from the
Current Debugging Session

You can bring another program under debugger control at any time during a debugging session, if you started
the debugger as explained in Section 9.1, “Starting the Kept Debugger”. Follow the procedure in that section for
bringing a program under debugger control (also note the restrictions about using that procedure).

9.5. Debugging an Already Running Program

This section describes how to debug a program that is already running in a subprocess or in a detached process.
Perform the following steps:

1. Start the Kept debugger configuration using the DCL command:

$ DEBUG KEEP

166 VSI Confidential, NDA Required

Starting and Ending
a Debugging Session

2. At the DBG> prompt, use the CONNECT command to interrupt the program and bring it under debug control.
CONNECT can be used to attach to a program running in a subprocess or attach to a program running in a
detached process. Detached processes must meet both of the following requirements:

* The detached process UIC must be in the same group as your process
* The detached process must have a CLI mapped

The second requirement effectively means that the program must have been started with a command similar
to this:

$ RUN DETACH | NPUT=xxx. com SYS$SYSTEM LOG NOUT
where

XXX. com

is a command procedure that starts the program with /NODEBUG.

Once you have connected to the program, the rest of the debugging session is the same as a normal debugger
session.

3. When you have finished debugging the program, do either of the following:

* Use the DISCONNECT command to release debugger control of the program. The program continues
execution.

 Exit the debugger. The program will terminate.

9.6. Interrupting Program Execution and
Aborting Debugger Operations

To interrupt program execution during a debugging session, click on the Stop button on the push button view (see
Figure 8.3, “Default Buttons in the Push Button View Table”).This is useful if, for example, the program is in
an infinite loop.

To abort a debugger operation in progress, click on Stop. This is useful if, for example, the debugger is displaying
along stream of data.

Clicking on Stop does not end the debugging session. Clicking on Stop has no effect when the program is not
running or when the debugger is not executing a command.

9.7. Ending a Debugging Session

To end a debugging session and terminate the debugger, choose Exit Debugger from the File menu on the main
window, or enter EXIT at the prompt (to avoid confirmation dialogue). This returns control to system level.

To rerun your program from the current debugging session, see Section 9.3, “Rerunning the Same Program from
the Current Debugging Session”.

To run another program from the current debugging session, see Section 9.4, “Running Another Program from
the Current Debugging Session”.

9.8. Additional Options for Starting the
Debugger

In addition to the startup procedure described in Section 9.1, “Starting the Kept Debugger”, the following options
are available for starting the debugger from DCL level ($):

VSI Confidential, NDA Required 167

Starting and Ending
a Debugging Session

« Start the debugger by running the program to be debugged with the DCL command RUN (see Section 9.8.1,
“Starting the Debugger by Running a Program”).

* Interrupt a running program by pressing Ctrl/Y and then start the debugger using the DCL command DEBUG
(see Section 9.8.2, “Starting the Debugger After Interrupting a Running Program”).

* Override the debugger's default (HP DECwindows Motif for OpenVMS user interface (see Section 9.8.3,
“Overriding the Debugger's Default Interface”) to achieve the following:

 Display the HP DECwindows Motif for OpenVMS user interface on another workstation
+ Display the command interface in a DECterm window along with any program input/output (I/O)
 Display the command interface and program I/O in separate DECterm windows

In all cases, before starting the debugger, verify that you have compiled and linked the modules of your program
(as explained in Section 1.2, “Preparing an Executable Image for Debugging”).

9.8.1. Starting the Debugger by Running a Program

You can start the debugger and also bring your program under debugger control in one step by entering the DCL
command RUN f i | espec (assuming the program was compiled and linked with the /DEBUG qualifier).

However, you cannot then use the Rerun or Run features explained in Section 9.3, “Rerunning the Same Program
from the Current Debugging Session” and Section 9.4, “Running Another Program from the Current Debugging
Session”, respectively. To rerun the same program or run a new program under debugger control, you must first
exit the debugger and start it again.

To start the debugger by running a program, enter the DCL command RUN f i | espec to start the debugger.
For example:

$ RUN El GHTQUEENS

By default, the debugger starts up as shown in Figure 9.4, “Source Display at Startup”, executing any user-defined
initialization file and displaying the program's source code in the main window. The current-location pointer shows
that execution is paused at the start of the main program. The debugger sets the language-dependent parameters
to the source language of the main program unit.

For more information about debugger startup, see Section 9.1, “Starting the Kept Debugger”.

9.8.2. Starting the Debugger After Interrupting a
Running Program

You can bring a program that is executing freely under debugger control. This is useful if you suspect that the
program might be in an infinite loop or if you see erroneous output.

To bring your program under debugger control:

1. Enter the DCL command RUN /NODEBUG f i | espec to execute the program without debugger control.
2. Press Ctrl/Y to interrupt the executing program. Control passes to the DCL command interpreter.

3. Enter the DCL command DEBUG to start the debugger.

For example:

$ RUN NODEBUG EI GHTQUEENS
#
arl/y

168 VSI Confidential, NDA Required

Starting and Ending
a Debugging Session

I nterrupt
$ DEBUG
[starts debugger]

At startup, the debugger displays the main window and executes any user-defined initialization file, and sets the
language-dependent parameters to the source language of the module in which execution was interrupted.

To help you determine where execution was interrupted:
1. Look at the main window.
2. Enter the SET MODULES /CALLS command at the command-entry prompt.

3. Display the Call Stack menu on that window to identify the sequence of routine calls on the call stack. The
routine at level 0 is the routine in which execution is currently paused(see Section 10.3.1, “Determining Where
Execution Is Currently Paused”).

When you start the debugger in this manner, you cannot then use the Rerun or Run features explained in Section 9.3,
“Rerunning the Same Program from the Current Debugging Session” and Section 9.4, “Running Another Program
from the Current Debugging Session”, respectively. To rerun the same program or run a new program under
debugger control, you must first exit the debugger and start it again.

For more information about debugger startup, see Section 9.1, “Starting the Kept Debugger”.

9.8.3. Overriding the Debugger's Default Interface

By default, if your workstation is running HP DECwindows Motif for OpenVMS, the debugger starts up in the
HP DECwindows Motif for OpenVMS user interface, which is displayed on the workstation specified by the HP
DECwindows Motif for OpenVMS application wide logical name DECWsDI SPLAY.

This section explains how to override the debugger's default DECwindows Motif user interface to achieve the
following:

 Display the debugger's HP DECwindows Motif for OpenVMS user interface on another workstation
» Display the debugger's command interface in a DECterm window along with any program I/O
 Display the debugger's command interface and program I/O in separate DECterm windows

The logical name DBGSDECWEDI SPLAY enables you to override the default interface of the debugger. In most
cases, there is no need to define DBGSDECWEDI SPLAY because the default is appropriate.

Section 9.8.3.4, “Explanation of DBGSDECWS$DISPLAY and DECWS$DISPLAY” provides more information
about the logical names DBGSDECWEDI SPLAY and DECWSDI SPLAY.

9.8.3.1. Displaying the Debugger's HP DECwindows Motif for
OpenVMS User Interface on Another Workstation

If you are debugging a HP DECwindows Motif for OpenVMS application that uses most of the screen (or if you
are debugging pop-ups in a Motif application), you might find it useful to run the program on one workstation and
display the debugger's HP DECwindows Motif for OpenVMS user interface on another. To do so:

1. Enter a logical definition with the following syntax in the DECterm window from which you plan to run the
program:

DEFI NE/ JOB DBGSDECWSDI SPLAY wor kst at i on_pat hnane

The path name for the workstation where the debugger's HP DECwindows Motif for OpenVMS user interface
is to be displayed is wor kst at i on_pat hnane. See the description of the SET DISPLAY command in the
OpenVMS DCL Dictionary for the syntax of this path name.

VSI Confidential, NDA Required 169

Starting and Ending
a Debugging Session

It is recommended that you use a job definition. If you use a process definition, it must not have the CONFINE
attribute.

2. Run the program from that DECterm window. The debugger's HP DECwindows Motif for OpenVMS
user interface is now displayed on the workstation specified by DBGSDECWSEDI SPLAY. The application's
windowing interface is displayed on the workstation where it is normally displayed.

3. Use client/server mode (see Section 9.9.2, “Starting the Server”).

9.8.3.2. Displaying the Debugger's Command User Interface in a
DECterm Window

To display the debugger's command interface in a DECterm window, along with any program 1/O:
1. Enter the following definition in the DECterm window from which you plan to start the debugger:
$ DEFI NE/ JOB DBGSDECWSDI SPLAY " "

You can specify one or more spaces between the quotation marks. You should use a job definition for the logical
name. If you use a process definition, it must not have the CONFINE attribute.

2. Start the debugger from that DECterm window (see Section 9.1, “Starting the Kept Debugger”). The debugger's
command interface is displayed in the same window.

For example:

$ DEFI NE/ JOB DBGSDECWSDI SPLAY " "
$ DEBUG KEEP

Debugger Banner and Versi on Number
DBG>

You can now bring your program under debugger control as explained in Section 9.1, “Starting the Kept Debugger”.

9.8.3.3. Displaying the Command Interface and Program Input/
Output in Separate DECterm Windows
This section describes how to display the debugger's command interface in a DECterm window other than the

DECterm window in which you start the debugger. This separate window is useful when using the command
interface to debug a screen-oriented program as follows:

* The program's input/output (I/0) is displayed in the window from which you start the debugger.
» The debugger's /O, including any screen-mode display, is displayed in the separate window.

The effect is the same as entering the SET MODE SEPARATE command at the DBG> prompt on a workstation
running VWS rather than HP DECwindows Motif for OpenVMS. (The SET MODE SEPARATE command is
not valid when used in a DECterm window.)

The following example shows how to display the debugger's command interface in a separate debugger window
titled Debugger.

1. Create the command procedure SEPARATE_ WINDOW.COM shown in Example 9.1, “Command Procedure
SEPARATE WINDOW.COM”.

Example 9.1. Command Procedure SEPARATE_WINDOW.COM

$! Sinulates effect of SET MODE SEPARATE from a DECter m wi ndow
$!
$ CREATE/ TERM NAL/ NOPRCCESS -

/ W NDOW ATTRI BUTES=(Tl TLE="Debugger", -

170 VSI Confidential, NDA Required

Starting and Ending
a Debugging Session

| CON_NAME="Debugger", ROW5=40) -
/ DEFI NE_LOG CAL=(TABLE=LNMBJOB, DBGS$I NPUT, DBGSCQUTPUT)
ALLOCATE DBGSOUTPUT
EXITS !
The conmmand CREATE/ TERM NAL/ NOPROCESS creates a DECterm
wi ndow wi t hout a process.

The /W NDOW ATTRI BUTES qual i fier specifies the wi ndow s
title (Debugger), icon nanme (Debugger), and the nunber
of rows in the w ndow (40).

The /DEFINE_LOG CAL qualifier assigns the |ogical nanes
DBG$I NPUT and DBGPOUTPUT to the wi ndow, so that it becones
t he debugger input and output device.

The conmmand ALLOCATE DBGBOUTPUT causes the separate wi ndow
to remai n open when you end the debuggi ng sessi on.

B PRARLDPRHHH

2. Execute the command procedure as follows:

$ @BEPARATE_W NDOW
9%OCL- |- ALLOC, _MYNODE$TWA8: al | ocat ed

A new DECterm window is created with the attributes specified in SEPARATE_W NDOW COM

3. Follow the steps in Section 9.8.3.2, “Displaying the Debugger's Command User Interface in a DECterm
Window” to display the debugger's command interface. The interface is displayed in the new window.

4. You can now enter debugger commands in the debugger window. Program I/O is displayed in the DECterm
window from which you started the debugger.

5. When you end the debugging session with the EXIT command, control returns to the DCL prompt in the
program I/O window but the debugger window remains open.

[o)

. To display the debugger's command interface in the same window as the program's I/O (as in Section 9.8.3.2,
“Displaying the Debugger's Command User Interface in a DECterm Window”), enter the following commands:

$ DEASSI GV JOB DBGSI NPUT
$ DEASSI GV JOB DBGSOUTPUT

The debugger window remains open until you close it explicitly.

9.8.3.4. Explanation of DBG$DECWS$DISPLAY and DECW
$DISPLAY

By default, if your workstation is running HP DECwindows Motif for OpenVMS, the debugger starts up in the
HP DECwindows Motif for OpenVMS user interface, which is displayed on the workstation specified by the HP
DECwindows Motif for OpenVMS application wide logical name DECWSDI SPLAY. DECWSDI SPLAY is defined
in the job table by File View or DECterm and points to the display device for the workstation.

For information about DECWSDI SPLAY, see the description of the DCL commands SET DISPLAY and SHOW
DISPLAY in the OpenVMS DCL Dictionary.

The logical name DBGSDECWEDI SPLAY is the debugger-specific equivalent of DECWsDI SPLAY. DBGSDECW
$DI SPLAY is similar to the debugger-specific logical names DBGSI NPUT and DBGBOUTPUT. These logical
names enable you to reassign SYS$I NPUT and SYS$OUTPUT, respectively, to specify the device on which
debugger input and output are to appear.

The default user interface of the debugger results when DBGSDECWSDI SPLAY is undefined or has the same
translation as DECWDI SPLAY. By default, DBGSDECWEDI SPLAY is undefined.

VSI Confidential, NDA Required 171

Starting and Ending
a Debugging Session

The algorithm that the debugger follows when using the logical definitions of DECWSDI SPLAY and DBGSDECW
$DI SPLAY is as follows:

1. If the logical name DBGSDECWSDI SPLAY is defined, then use it. Otherwise, use the logical name DECW
$DI SPLAY.

2. Translate the logical name. If its value is not null (if the string contains characters other than spaces), the HP
DECwindows Motif for OpenVMS user interface is displayed on the specified workstation. If the value is null
(if the string consists only of spaces), the command interface is displayed in the DECterm window.

To enable the OpenVMS Debugger to start up in the HP DECwindows Motif for OpenVMS user interface, first
enter one of the following DCL commands:

$ DEFI NE DBGSDECWEDI SPLAY " WSNAME: : 0"
$ SET DI SPLAY/ CREATE/ NODE=WSNANME

where WSNAME is the node name of your workstation.

9.9. Starting the Motif Debug Client

The OpenVMS Debugger Version 7.2 features a client/server interface that allows you to debug programs running
on OpenVMS on a VAX or Alpha CPU from a client interface running on the same or separate system.

The debugger client/server retains the functionality of the kept debugger, but splits the debugger into two
components:the debug server and the debug client. The debug server runs on an OpenVMS system, and is just
like the kept debugger without the user interface. The debug client contains the user interface, and runs on an
OpenVMS system using HP DECwindows Motif for OpenVMS, or on a PC running Microsoft Windows 95 or
Microsoft Windows NT.

9.9.1. Software Requirements

The debug server requires OpenVMS Version 7.2 or later.

The debug client can run on any of the following:

* OpenVMS Version 7.2 or later, along with HP DECwindows Motif for OpenVMS Version 1.2-4
* Microsoft Windows 95

* Microsoft Windows NT Version 3.51 or later (Intel or Alpha)

The OpenVMS Debugger client/server configuration also requires that the following be installed on the OpenVMS
node running the server:

« A TCP/IP stack

* DCE RPC

Note

If you are running TCP/IP Services for OpenVMS (UCX) Version 4.1, you must have ECO2 installed. You can
also run a later version of UCX.

The OpenVMS Version 7.2 installation procedures automatically install DCE RPC.

9.9.2. Starting the Server

You can start the debug server after logging in directly to the OpenVMS system, or you may find it more convenient
to log in remotely with a product such as eXcursion, or an emulator such as Telnet.

172 VSI Confidential, NDA Required

Starting and Ending
a Debugging Session

To start the debug server, enter the following command:
$ DEBUG SERVER

The server displays its network binding strings. The server port number is enclosed in square brackets ([]). For
example:

$ DEBUG SERVERYDEBUG | - SPEAK: TCP/ | P: YES, DECnet: YES, UDP: YES
YOEBUG- | - WATCH: Networ k Bi nding: ncacn_ip_tcp:16.32.16.138[1034]
YOEBUG- | - WATCH: Networ k Bi ndi ng: ncacn_dnet _nsp: 19. 10[RPC224002690001]
YOEBUG- | - WATCH: Networ k Bi ndi ng: ncadg_i p_udp: 16. 32. 16. 138[1045]
YDEBUG- | - AWAI T: Ready for client connection..

Use one of the network binding strings to identify this server when you connect from the client (see Section 9.9.4,
“Starting the Motif Client”). The following table matches the network binding string prefix with its associated
network transport:

Network Transport Network Binding String Prefix
TCP/IP ncacn_ip_tcp

DEChnet ncacn_dnet nsp

UDP ncadg ip udp

Note

You can usually identify the server using only the node name and the port number. For example, nodnani 1034] .

Messages and program output appear by default in the window in which you start the server. You can redirect
program output to another window as required.

The following example contains an error message that indicates that DCE is not installed:

$ debug/ server

%.1 B- E- ACTI MAGE, error activating inage disk:[SYSn. SYSCOWON.] [SYSLI B] DTSS
$SHR. EXE

-RVB-E-FNF, file not found

This indicates that DCE is installed but not configured.

9.9.3. Primary Clients and Secondary Clients

The debugger client/server interface allows more than one client to be connected to the same server. This allows
team debugging, classroom sessions, and other applications.

The primary client is the first client to connect to the server. A secondary client is an additional client that has
connected to the same server. The primary client controls whether or not any secondary clients can connect to
the server.

Section 9.9.4, “Starting the Motif Client” describes how to specify the number of secondary clients allowed in
a session.

9.9.4. Starting the Motif Client

A session is the connection between a particular client and a particular server. Each session is identified within
the client by the network binding string the client used to connect to the server. Once the debug server is running,
start the Motif debug client. To do so, enter the following command:

$ DEBUG CLI ENT

VSI Confidential, NDA Required 173

Starting and Ending
a Debugging Session

To establish a session from the Motif debug client, click on Server Connection from the File menu. The Server
Connection dialog displays, in the Connection list, the default network binding string. This string is based on the
last string you entered, or the node on which the client is running. There is not necessarily a server associated with
the default binding string. Figure 9.6, “Debug Server Connection Dialog” shows the Server Connection dialog.

Figure 9.6. Debug Server Connection Dialog

Placeholder
for images

From the buttons at the bottom of the Server Connection dialog, you can
» Connect to the selected server to begin and activate a new session

+ Disconnect from a session

» Test whether the session is still available

 Stop the server

 Cancel the connection operation and dismiss the dialog

In addition, the Options button invokes the Server Options dialog, which allows you to select the network transport
to be used (see Section 11.5.1, “Choosing a Transport™).

The Server Options dialog also allows you to select the number of secondary clients (0-31) allowed for a new
session.

Figure 9.7, “Server Options Dialog” shows the Server Options dialog.

Figure 9.7. Server Options Dialog

Placeholder
for images

To connect the client to a server, perform the following steps:

1. Open the File menu.

2. Click Server Connection.

3. Enter the server network binding string in the Connection field, or select the default string.
4. Click Options.

5. In the Server Options dialog, click on the network transport: TCP/IP, DECnet, or UDP.

6. In the Server Options dialog. Select the number of secondary clients (0-31) to be allowed.

174 VSI Confidential, NDA Required

Starting and Ending
a Debugging Session

7. Click OK to dismiss the Server Options dialog.
8. In the Server Connection dialog, click Connect.

You can establish connections to an unlimited number of servers by repeating the sequence above and specifying
the new network binding string each time.

9.9.5. Switching Between Sessions

Each time you connect to a server and initiate a session, the session is listed in the Active Sessions list in the Server
Connection dialog (see Figure 9.8, “Active Sessions List”). You can switch back and forth between sessions. Each
time you switch to a new session, the debugger updates the contents of any open debugger displays with the new
context.

To switch to a different session, perform the following steps:

1. Open the File menu.

2. Click Server Connection.

3. Click the Active Sessions list to display the list of active sessions.

4. Double click the required session in the Active Sessions list. This selects the session as the current session,
dismisses the Server Connection dialog, and updates the debugger displays with the current context.

Note that you cannot change the number of secondary clients allowed on a session while that session is active. To
change the number of clients allowed on a session, you must be the primary client, and perform the following steps:

1. Open the File menu.

2. Specify the network binding string of the session.

3. Click Disconnect.

4. Click Options.

5. In the Server Options dialog, click on the network transport: TCP/IP, DECnet, or UDP.

6. In the Server Options dialog, select the number of secondary clients (0-31) to be allowed.
7. Click OK to dismiss the Server Options dialog.

8. In the Server Connection dialog, click Connect.

Figure 9.8. Active Sessions List

Placeholder
for images

9.9.6. Closing a Client/Server Session

Click on Exit Debug? on the File menu to invoke the Confirm Exit dialog. Figure 9.9, “Confirm Exit Dialog”
shows the Confirm Exit dialog.

VSI Confidential, NDA Required 175

Starting and Ending
a Debugging Session

Figure 9.9. Confirm Exit Dialog

Placeholder
for images

Once you have invoked the Confirm Exit dialog, perform one of the following:
 To terminate both the client and the server (default) click OK.
» To dismiss the Confirm Exit dialog without taking any action, click Cancel.
* To terminate only the debug client, perform the following steps:

1. Click Exit Server.

2. Click OK.
» To terminate only the debug server, perform the following steps:

1. Click Exit Client.

2. Click OK.

If you do not terminate the debug server, you can connect to the server from another debug client. If you do not
terminate the client, you can connect to another server for which you know the network binding string.

176 VSI Confidential, NDA Required

Using the Debugger

Chapter 10. Using the Debugger

This chapter explains how to:

 Display the source code of your program (Section 10.1, “Displaying the Source Code of Your Program’)
» Edit your program under debugger control (Section 10.2, “Editing Your Program”)

» Execute your program under debugger control (Section 10.3, “Executing Your Program”)

» Suspend execution with breakpoints (Section 10.4, “Suspending Execution by Setting Breakpoints™)

» Examine and manipulate program variables (Section 10.5, “Examining and Manipulating Variables”)

» Access program variables (Section 10.6, “Accessing Program Variables™)

* Display and modify values stored in registers (Section 10.7, “Displaying and Modifying Values Stored in
Registers”)

* Display the decoded instruction stream of your program (Section 10.8, “Displaying the Decoded Instruction
Stream of Your Program™)

* Debug tasking programs (Section 10.9, “Debugging Tasking (Multithread) Programs”)

» Customize the debugger's HP DECwindows Motif for OpenVMS user interface (Section 10.10, “Customizing
the Debugger's HP DECwindows Motif for OpenVMS Interface™)

The chapter describes window actions and window menu choices, but you can perform most common debugger
operations by choosing items from context-sensitive pop-up menus. To access these menus, click MB3 while the
mouse pointer is in the window area.

You can also enter commands at the HP DECwindows Motif for OpenVMS command prompt. For information
about entering debugger commands, see Section 8.3, “Entering Commands at the Prompt”.

For the source code of programs EI GHTQUEENS. EXE and 8QUEENS. EXE, shown in the figures of this chapter,
see Appendix D, EIGHTQUEENS.C.

10.1. Displaying the Source Code of Your
Program

The debugger displays the source code of your program in the main window (see Figure 10.1, “Source Display”).

Figure 10.1. Source Display

Placeholder
for images

Whenever execution is suspended (for example, at a breakpoint), the debugger updates the source display by
displaying the code surrounding the point at which execution is paused. The current-location pointer, to the left

VSI Confidential, NDA Required 177

Using the Debugger

of the source code, marks which line of code will execute next. (A source line corresponds to one or more
programming-language statements, depending on the language and coding style.)

By default, the debugger displays compiler-generated line numbers to the left of the source code. These numbers
help identify breakpoints, which are listed in the breakpoint view (see Section 10.4.4, “Identifying the Currently
Set Breakpoints™). You can choose not to display line numbers so that more of the source code can show in the
window. To hide or display line numbers, toggle Display Line Numbers from the File menu on the main window.

The Call Stack menu, between the source view and the push button view, shows the name of the routine whose
source code is displayed.

The current-location pointer is normally filled in as shown in Figure 10.1, “Source Display”. It is cleared if the
displayed code is not that of the routine in which execution is paused (see Section 10.1.3, “Making Source Code
Available for Display” and Section 10.6.2, “Setting the Current Scope Relative to the Call Stack™).

You can use the scroll bars to show more of the source code. However, you can scroll vertically through only one
module of your program at a time. (A module corresponds generally to a compilation unit. With many programming
languages, a module corresponds to the contents of a source file. With some languages, such as Ada, a source file
might contain one or more modules.)

The following sections explain how to display source code for other parts of your program so that you can set
breakpoints in various modules, and so on. Section 10.1.3, “Making Source Code Available for Display” explains
what to do if the debugger cannot find source code for display. Section 10.6.2, “Setting the Current Scope Relative
to the Call Stack” explains how to display the source code associated with routines that are currently active on
the call stack.

After navigating the main window, you can redisplay the location at which execution is paused by clicking on
the Call Stack menu.

If your program was optimized during compilation, the source code displayed might not reflect the actual contents
of some program locations (see Section 1.2, “Preparing an Executable Image for Debugging”).

10.1.1. Displaying the Source Code of Another Routine

To display source code of another routine:

1. Choose Browse Sources from the File menu on the main window (see Figure 10.2, “Displaying Source Code
of Another Routine™).

Select SYMBOLIC display the names of all modules linked in the image. Select ALL to display the names of
only those modules for which the debugger has symbolic information.

The Source Browser dialog box displays the name of your executable image, which is highlighted, and the
class of shareable images linked with it (SYMBOLIC or ALL). The name of a linked image is dimmed if no
symbolic information is available for that image.

2. Double click on the name of your executable image. The names of the modules in that image are displayed
(indented) under the image name.

3. Double click on the name of the module containing the routine of interest. The names of the routines in that
module are displayed (indented) under the module name, and the Display Source button is now highlighted.

4. Click on the name of the routine whose source code you want to display.

5. Click on the Display Source push button. The debugger displays in the source view the source code of the target
routine, along with an empty breakpoint button to the left of the source code. If the instruction view is open,
this display is updated to show the machine code of the target routine.

Section 10.6.2, “Setting the Current Scope Relative to the Call Stack” describes an alternative way to display
routine source code for routines currently active on the call stack.

178 VSI Confidential, NDA Required

Using the Debugger

Figure 10.2. Displaying Source Code of Another Routine

Placeholder
for images

10.1.2. Displaying the Source Code of Another Module

To display source code of another module:
1. Choose Browse Sources from the File menu on the main window.

Select SYMBOLIC display the names of all modules linked in the image. Select ALL to display the names of
only those modules for which the debugger has symbolic information.

The Source Browser dialog box displays the name of your executable image, which is highlighted, and the class
of shareable images linked with it (SYMBOLIC or ALL). The names of the shareable images are dimmed if
no symbolic information is available for them.

2. Double click on the name of your executable image. The names of the modules in that image are displayed
(indented) under the image name.

3. Click on the name of the module whose source code you want to display. The Display Source button is now
highlighted.

4. Click on Display Source. The source display in the main window now shows the routine's source code. (If the
instruction display in the instruction view is open, this display is updated to show the routine's instruction code.)

10.1.3. Making Source Code Available for Display

In certain cases, the debugger cannot display source code. Possible causes are:

» Execution might be paused within a module of your program that was compiled or linked without the debug
option (see Section 1.2, “Preparing an Executable Image for Debugging”).

» Execution might be paused within a system or library routine for which no symbolic information is intended to
be available. In such cases you can quickly return execution to the calling routine by clicking one or more times
on the S/ret button in the push button view (see Section 10.3.5, “Returning from a Called Routine”).

* The source file might have been moved to a different directory after it was compiled. Section 10.1.4, “Specifying
the Location of Source Files” explains how to tell the debugger whereto look for source files.

If the debugger cannot find source code for display, it tries to display the source code for the next routine down on
the call stack for which source code is available. If the debugger can display source code for such a routine, the
current-location pointer is moved to point to the source line to which execution returns in the calling routine.

10.1.4. Specifying the Location of Source Files

Information about the characteristics and the location of source files is embedded in the debug symbol table of
your program. If a source file has been moved to a different directory since compile time, the debugger might not
find the file. To direct the debugger to your source files, use the SET SOURCE command at the DBG> prompt
(see Section 6.2, “Specifying the Location of Source Files”).

VSI Confidential, NDA Required 179

Using the Debugger

10.2. Editing Your Program

The debugger provides a simple text editor you can use to edit your source files while debugging your program
(see Figure 10.3, “Editor Window”).

The text editor available through the debugger's HP DECwindows Motif for OpenVMS menu interface is a simple
convenience feature, not intended to replace sophisticated text editors such as the Language-Sensitive Editor
(LSE). You cannot substitute a more sophisticated editor for the text editor invoked with the Edit File item in the
Commands menu. To use a different editor, enter the EDIT command at the DBG> prompt in the command view
(see EDIT in the Command Reference Dictionary of this manual).

Note

When you enter an EDIT command at the command prompt, the debugger uses the DECterm window that invoked
the debugging session as the user-defined-editor window (as opposed to the debugger's built-in editor, which is
hardwired to the COMMANDS EDIT FILE pull-down menu). This behavior constitutes a tradeoff that allows
a more flexible choice of editors. If you inadvertently exit this DECterm window using FILE EXIT or MWM
Close, the debugging session terminates abruptly, having lost its parent window.

Figure 10.3. Editor Window

Placeholder
for images

To invoke the editor, choose the Edit File item in the Commands menu on the main window. By default, the editor
opens a buffer and displays the module currently displayed in the source view. The buffer is named with the file
specification of the file in the buffer. If no file is displayed in the source view, the editor displays an empty text
buffer, called main_buffer. The buffer name appears in the buffer menu, which is just under the menu bar of the
editor view.

The editor allows you to create any number of text buffers by choosing New (for empty text buffers) or Open (for
existing files) from the File menu. The name of each text buffer appears in the buffer menu. You can cut, copy, and
paste text from buffer to buffer by choosing items from the Edit menu and selecting buffers from the buffer menu.
You can perform forward and backward search and replace operations by entering strings in the Find and Replace
with fields and clicking on a directional arrow. You can perform a repeated search for the string by continuing to
press the Return key. You can also continue a search by choosing the Find/Replace Next or Find/Replace Previous

items in the Edit menu.

To save the file, choose the Save or Save As... items from the File menu. If you do not save your corrections before
closing a modified buffer or exiting the debugger, the debugger displays a warning message.

To test any changes to the source code:

1. Select a DECterm window separate from that in which the debugger is running.
2. Recompile the program.

3. Relink the program.

4. Return to the debugging session.

180 VSI Confidential, NDA Required

Using the Debugger

5. Choose the Run Image... item in the File menu on the main window.

10.3. Executing Your Program

This section explains how to:

* Determine where execution is currently paused within your program
* Start or resume program execution

» Execute the program one source line at a time, step by step

For information about rerunning your program or running another program from the current debugging session,
see Section 9.3, “Rerunning the Same Program from the Current Debugging Session” and Section 9.4, “Running
Another Program from the Current Debugging Session”.

10.3.1. Determining Where Execution Is Currently
Paused

To determine where execution is currently paused within your program:

1. If the current-location pointer is not visible in the main window, click on the Call Stack menu of that window
to display the pointer (see Figure 10.1, “Source Display™).

2. Look at the current-location pointer:

* Ifthe pointer is filled in, it marks the source line whose code will execute next (see Section 10.1, “Displaying
the Source Code of Your Program”). The Call Stack menu always shows the routine at scope level O (where
execution is paused) when the pointer is filled in.

+ Ifthe pointer is cleared, the source code displayed is that of a calling routine, and the pointer marks the source
line to which execution returns in that routine:

+ If the Call Stack menu shows level 0, source code is not available for display for the routine in which
execution is paused (see Section 10.1.3, “Making Source Code Available for Display”).

+ Ifthe Call Stack menu shows a level other than 0, you are displaying the source code for a calling routine
(see Section 10.6.2, “Setting the Current Scope Relative to the Call Stack™).

To list the sequence of routine calls that are currently active on the call stack, click on the Call Stack menu. Level
0 denotes the routine in which execution is paused, level 1 denotes the calling routine, and so on.

10.3.2. Starting or Resuming Program Execution

To start program execution or resume execution from the current location, click on the Go button in the push button
view (see Figure 8.3, “Default Buttons in the Push Button View Table”).

Letting your program run freely without debugger intervention is useful in situations such as the following:

» To test for an infinite loop. In this case, you start execution; then, if your program does not terminate and you
suspect that it is looping, click on the Stop button. The main window will show where you interrupted program
execution, and the Call Stack menu will identify the sequence of routine calls at that point (see Section 10.3.1,
“Determining Where Execution Is Currently Paused”).

» To execute your program directly to a particular location. In this case, you first set a breakpoint at the location
(see Section 10.4, “Suspending Execution by Setting Breakpoints™) and then start execution.

Once started, program execution continues until one of the following events occurs:

VSI Confidential, NDA Required 181

Using the Debugger

* The program completes execution.

* A breakpoint is reached (including a conditional breakpoint whose condition is true).
» A watch point is triggered.

* An exception is signaled.

* You click on the Stop button on the push button view.

Whenever the debugger suspends execution of the program, the main window display is updated and the current-
location pointer marks which line of code will execute next.

10.3.3. Executing Your Program One Source Line at a
Time

To execute one source line of your program, click on the STEP button in the push button view or enter the STEP
command in the command view. This debugging technique (called stepping) is one of the most commonly used.

After the line executes, the source view is updated and the current-location pointer marks which line of code will
execute next.

Note the following points about source lines and the stepping behavior:

* A source line can consist of one or more programming language elements depending on the language and coding
style used.

* When you click on the STEP button, the debugger executes one executable line and suspends execution at the
start of the next executable line, skipping over any intervening non executable lines.

» Executable lines are those for which instructions were generated by the compiler (for example, lines with routine
call or assignment statements). Executable lines have a button to their left in the main window.

* Examples of non executable lines are comment lines or lines with variable declarations without value
assignments. Non executable lines do not have a button to their left in the main window.

Keep in mind that if you optimized your code at compilation time, the source code displayed might not reflect the
code that is actually executing (see Section 1.2, “Preparing an Executable Image for Debugging”).

10.3.4. Stepping into a Called Routine

When program execution is paused at a routine call statement, clicking on the STEP button typically executes the
called routine in one step (depending on the coding style used), and the debugger suspends execution at the next
source line in the calling routine(assuming no breakpoint was set within the called routine). This enables you to
step through the code quickly without having to trace execution through any called routines (some of which might
be system or library routines). This is called stepping over called routines.

To step into a called routine so that you can execute it one line at a time:

1. Suspend execution at the routine call statement, for example, by setting a breakpoint (see Section 10.4,
“Suspending Execution by Setting Breakpoints”) and then clicking on the Go button in the push button view.

2. When execution is paused at the call statement, click on the S/in button in the push button view, or enter the
STEP/INTO command at the DBG> prompt. This moves execution just past the start of the called routine.

Once execution is within the called routine, click on the STEP button to execute the routine line by line.

Clicking on the S/in button when execution is not paused at a routine call statement is the same as clicking on
the STEP button.

182 VSI Confidential, NDA Required

Using the Debugger

10.3.5. Returning from a Called Routine

When execution is suspended within a called routine, you can execute your program directly to the end of that
routine by clicking on the S/ret button in the push button view, or enter the STEP/RETURN command at the
DBG> prompt.

The debugger suspends execution just before the routine's return instruction executes. At that point, the routine's
call frame has not been deleted from the call stack, so you can still get the values of variables local to that routine,
and so on.

You can also use the S/call button in the push button view (or enter the STEP/CALL command at the DBG>
prompt) to execute the program directly to the next Return or Call instruction.

The S/ret button is particularly useful if you have inadvertently stepped into a system or library routine (see
Section 10.1.3, “Making Source Code Available for Display”).

10.4. Suspending Execution by Setting
Breakpoints

A breakpoint is a location in your program at which you want execution to stop so that you can check the current
value of a variable, step into a routine, and so on.

When using the debugger's HP DECwindows Motif for OpenVMS user interface, you can set breakpoints on:
 Specific source lines
* Specific routines (functions, subprograms, and so on)

» Exceptions signaled during the execution of your program

Note

If you are stopped at a breakpoint in a routine that has control of the mouse pointer by a Pointer Grab or a Keyboard
Grab, your workstation will hang.

To work around this problem, debug your program using two workstations. For more information, see
Section 9.8.3.1, “Displaying the Debugger's HP DECwindows Motif for OpenVMS User Interface on Another
Workstation”.

The debugger provides two ways to qualify breakpoints:

* You can set a conditional breakpoint.The debugger suspends execution at a conditional breakpoint only when
a specified relational expression is evaluated as true.

* You can set an action breakpoint. The debugger executes one or more specified system-specific commands
when it reaches the breakpoint.

You can set a breakpoint that is both a conditional and action breakpoint.

The following sections explain these breakpoint options.

10.4.1. Setting Breakpoints on Source Lines

You can set a breakpoint on any source line that has a button to its left in the source display. These are the lines
for which the compiler has generated executable code (routine declarations, assignment statements, and so on).

To set a breakpoint on a source line:

VSI Confidential, NDA Required 183

Using the Debugger

. Find the source line on which you want to set a breakpoint (see Section 10.1, “Displaying the Source Code
of Your Program”).

. Click on the button to the left of that line. (The breakpoint is set when the button is filled in.) The breakpoint

is set at the start of the source line - that is, on the first machine-code instruction associated with that line.

Figure 10.4, “Setting a Breakpoint on a Source Line” shows that a breakpoint has been set on the start of line 37.

Figure 10.4. Setting a Breakpoint on a Source Line

Placeholder
for images

10.4.2. Setting Breakpoints on Routines with Source
Browser

Setting a breakpoint on a routine enables you to move execution directly to the routine and inspect the local
environment.

To set a breakpoint on a routine:

1.

Choose Browse Sources from the File menu on the main window (see Figure 10.2, “Displaying Source Code
of Another Routine”).

Select SYMBOLIC to display the names of all modules linked in the image. Select ALL to display the names
of only those modules for which the debugger has symbolic information.

The Source Browser dialog box displays the name of your executable image, which is highlighted, and the
class of shareable images linked with it (SYMBOLIC or ALL). The name of a linked image is dimmed if no
symbolic information is available for that image.

. Double click on the name of the executable image. The names of the modules in that image are displayed

(indented) under the image name.

. Double click on the name of the target module. The names of the routines in that module are displayed (indented)

under the module name (see Figure 10.5, “Setting a Breakpoint on a Routine”).

. Double click on the name of the routine on which to set a breakpoint. The debugger echoes the results of your

SET BREAKPOINT command on the command line in the command view.

Alternatively, click once on the name of the routine, then click the Set Breakpoint button in the Source Browser
view. The debugger echoes the results of your SET BREAKPOINT command on the command line in the
command view.

Figure 10.5. Setting a Breakpoint on a Routine

Placeholder
for images

184 VSI Confidential, NDA Required

Using the Debugger

10.4.3. Setting an Exception Breakpoint

An exception breakpoint suspends execution when an exception is signaled and before any exception handler
declared by your program executes. This enables you to step into the exception handler (if one is available) to
check the flow of control.

To set an exception breakpoint, choose On Exception from the Break menu on the main window or the optional
views window.

10.4.4. Identifying the Currently Set Breakpoints

There are three ways to determine which breakpoints are currently set:

* Scroll through your source code and note the lines whose breakpoint button is filled in. This method can be
time consuming and also does not show which breakpoints were set and then deactivated (see Section 10.4.5,
“Deactivating, Activating, and Canceling Breakpoints™).

* Choose Views... from the Options menu on the main window or the optional views window. When the Views
dialog box appears, click on Breakpoint View to display the breakpoint view (see Figure 8.4, “Debugger Main
Window and the Optional Views Window”).

The breakpoint view lists a module name and line number for each breakpoint (see Section 10.1, “Displaying
the Source Code of Your Program”). A filled-in button next to the breakpoint identification indicates that the
breakpoint is activated. A cleared button indicates that the breakpoint is deactivated.

* Enter the SHOW BREAK command at the DBG> prompt in the command view. The debugger lists all the
breakpoints that are currently set, including specifications for conditional breakpoints, and commands to be
executed at action breakpoints.

10.4.5. Deactivating, Activating, and Canceling
Breakpoints

After a breakpoint is set, you can deactivate, activate, or delete it.

Deactivating a breakpoint causes the debugger to ignore the breakpoint during program execution. However,
the debugger keeps the breakpoint listed in the breakpoint view so that you can activate it at a later time, for
example, when you rerun the program (see Section 9.3, “Rerunning the Same Program from the Current Debugging
Session”). Note the following points:

* To deactivate a specific breakpoint, clear the button for that breakpoint in the main window or in the breakpoint
view.

In the breakpoint view, you can also choose Toggle from the Break menu, if the breakpoint is currently activated.
* To deactivate all breakpoints, choose Deactivate All from the Break menu.
Activating a breakpoint causes it to take effect during program execution:
» To activate a breakpoint, fill in the button for that breakpoint in the main window or in the breakpoint view.

In the breakpoint view, you can also choose Toggle from the Break menu, if the breakpoint is currently
deactivated.

» To activate all breakpoints, choose Activate All from the Break menu.

When you cancel a breakpoint, it is no longer listed in the breakpoint view so that later you cannot activate it from
that list. You have to reset the breakpoint as explained in Section 10.4.1, “Setting Breakpoints on Source Lines”
and Section 10.4.2, “Setting Breakpoints on Routines with Source Browser”. Note the following points:

VSI Confidential, NDA Required 185

Using the Debugger

» To cancel a specific breakpoint, choose Cancel from the Break menu on the optional views window.

» To cancel all breakpoints, choose Cancel All from the Break menu.

10.4.6. Setting a Conditional Breakpoint

The debugger suspends execution of the program at a conditional breakpoint only when a specified expression
is evaluated as true. The debugger evaluates the conditional expression when program execution reaches the
breakpoint and ignores the breakpoint if the expression is not true.

The following procedure sets a conditional breakpoint, whether or not a breakpoint was previously set at that
location:

1. Display the source line on which you want to set the conditional breakpoint (see Section 10.1, “Displaying the
Source Code of Your Program”).

2. Do one of the following:

* Press Ctrl/MB1 on the button to the left of the source line. This displays the Set/Modify Breakpoint dialog
box, showing the source line you selected in the Location: field (see Figure 10.6, “Setting a Conditional
Breakpoint™).

* Choose the Set or Set/Modify item from the Break menu. When the Set/Modify Breakpoint dialog box
displays, enter the source line in the Location: field.

3. Enter a relational expression in the Condition: field of the dialog box. The expression must be valid in the
source language. For example, a[3] == 0 is a valid relational expression in the C language.

4. Click on OK. The conditional breakpoint is now set. The debugger indicates that a breakpoint is conditional by
changing the shape of the breakpoint's button from a square to a diamond.

Figure 10.6. Setting a Conditional Breakpoint

Placeholder
for images

The following procedure modifies a conditional breakpoint; that is, it can be used either to change the location
or condition associated with an existing conditional breakpoint, or to change an unqualified breakpoint into a
conditional breakpoint:

1. Choose Views... from the Options menu on the main window or optional views window. When the Views dialog
box appears, click on Breakpoint View to display the breakpoint view.

2. From the breakpoint view, do one of the following:
* Press Ctrl/MBI1 on the button to the left of the listed breakpoint.
* Click on a breakpoint listed in the view, and choose the Set/Modify item from the Break menu.

3. Follow steps 3 and 4 of the previous procedure, as appropriate.

10.4.7. Setting an Action Breakpoint

When a program reaches an action breakpoint, the debugger suspends execution of the program and executes a
specified list of commands.

186 VSI Confidential, NDA Required

Using the Debugger

To set an action breakpoint, whether or not a breakpoint was previously set at that location:

1. Display the source line on which you want to set the action breakpoint (see Section 10.1, “Displaying the Source
Code of Your Program”).

2. Do one of the following:
* Press Ctrl/MBI1 on the button to the left of the source line. This displays the Set/Modify Breakpoint dialog
box, showing the source line you selected in the Location: field (see Figure 10.6, “Setting a Conditional

Breakpoint”).

* Choose the Set or Set/Modify item from the Break menu. When the Set/Modify Breakpoint dialog box
displays, enter the source line in the Location: field.

3. Enter one or more debugger commands in the Action: field of the dialog box. For example:
DEPCSIT x[j] = 3; STEP, EXAM NE a

4. Click on OK. The action breakpoint is now set (see Figure 10.7, “Setting an Action Breakpoint”.)

Figure 10.7. Setting an Action Breakpoint

Placeholder
for images

The following procedure modifies an action breakpoint; that is, it can be used either to change the location or
command associated with an existing action breakpoint, or to change an unqualified breakpoint into an action
breakpoint:

1. Choose Views... from the Options menu on the main window or optional views window, then click on
Breakpoint View when the Views dialog box appears.

2. From the breakpoint view, do one of the following:
* Press Ctrl/MBI1 on the button to the left of the listed breakpoint.
* Click on a breakpoint listed in the view, and choose the Set/Modify item in the Break menu.

3. Follow steps 3 and 4 of the previous procedure, as appropriate.

10.5. Examining and Manipulating Variables

This section explains how to:

* Select variable names from windows
» Display the value of a variable

* Monitor a variable

» Watch a variable

* Change the value of a variable

VSI Confidential, NDA Required 187

Using the Debugger

See Section 10.6, “Accessing Program Variables”, which also applies to all operations on variables.

10.5.1. Selecting Variable Names from Windows

Use the following techniques to select variable names from windows for the operations described in the sections
that follow (see Section 10.5.2, “Displaying the Current Value of a Variable” for examples).

When selecting names, follow the syntax of the source programming language:

To specify a scalar (non aggregate) variable, such as an integer, real, Boolean, or enumeration type, select the
variable's name.

To specify an entire aggregate, such as an array or structure (record), select the variable's name.
To specify a single element of an aggregate variable, select the entity using the language syntax. For example:
» The string ar r 2[7] specifies element 7 of array ar r 2 in the C language.

 The string enpl oyee. addr ess specifies component addr ess of record (structure) enpl oyee in the
Pascal language.

To specify the object designated by a pointer variable, select the entity following the language syntax. For
example, in the C language, the string *i nt _poi nt specifies the object designated by pointer i nt _poi nt .

Select character strings from windows as follows:

3

In any window, to select a string delimited by blank spaces, use the standard HP DECwindows Motif for
OpenVMS word selection technique: position the pointer on that string and then double click MBI1.

In any window, to select an arbitrary character string, use the standard HP DECwindows Motif for OpenVMS
text-selection technique:position the pointer on the first character, press and hold MB1 while dragging the
pointer over the string and then release MB1.

In the debugger source display, you also have the option of using language-sensitive text selection. To select
a string delimited by language-dependent identifier boundaries, position the pointer on that string and press
Ctrl/MBI.

For example, suppose the source display contains the character string ar r 2[nj , then:
» To select ar r 2, position the pointer on ar r 2 and press Ctrl/MBI.
 To select m position the pointer on mand press Ctrl/MB1.

You can change the key sequence for language-sensitive text selection as explained in Section 10.10.4.2,
“Defining the Key Sequence for Language-Sensitive Text Selection”.

10.5.2. Displaying the Current Value of a Variable

To display the current value of a variable:

1.

Find and select the variable name in a window as explained in Section 10.5.1, “Selecting Variable Names from
Windows”.

. Click on theEX button in the push button view. The debugger displays the variable and its current value in the

command view. The debugger displays the value of a variable in the current scope, which might not be the
same as the source location you were intending.

Figure 10.8, “Displaying the Value of an Integer Variable”, Figure 10.9, “Displaying the Value of an Array
Aggregate”, and Figure 10.10, “Displaying the Value of an Array Element” show how to display the value of an
integer variable, array aggregate, and array element, respectively.

188 VSI Confidential, NDA Required

Using the Debugger

Figure 10.8. Displaying the Value of an Integer Variable

Placeholder
for images

Figure 10.9. Displaying the Value of an Array Aggregate

Placeholder
for images

Figure 10.10. Displaying the Value of an Array Element

Placeholder
for images

To display the current value in a different type or radix, use the following alternative method:

1. Find and select the variable name in a window as explained in Section 10.5.1, “Selecting Variable Names from
Windows”.

2. Choose Examine... in the Commands menu in the main window. The Examine dialog box appears with the
name selected in the Variable/Expression field.

3. Choose the default, int, long, quad, short, or char* item from the Typecast menu within the dialog box.

4. Choose the default, hex, octal, decimal, or binary item from the Output Radix menu within the dialog box.
5. Click on OK.

The value, altered to your specification, appears in the command view.

Figure 10.11, “Typecasting the Value of a Variable” shows that the variable j has been typecast as long.

Figure 10.11. Typecasting the Value of a Variable

Placeholder
for images

VSI Confidential, NDA Required 189

Using the Debugger

10.5.3. Changing the Current Value of a Variable

To change the current value of a variable:

* Find and select the variable name in a window as explained in Section 10.5.1, “Selecting Variable Names from
Windows”.

* Choose Deposit... from the Commands menu in the main window. The Deposit dialog box appears with the
name selected in the Variable field.

» Enter the new value in the Value field.

* Choose the default, hex, octal, decimal, or binary item from the Input Radix menu within the dialog box.
* Click on OK.

The new value, altered to your specification, appears in the command view and is assigned to the variable.

Figure 10.12, “Changing the Value of a Variable” shows a new value for the variable safe.

Figure 10.12. Changing the Value of a Variable

Placeholder
for images

10.5.4. Monitoring a Variable

When you monitor a variable, the debugger displays the value in the monitor view and checks and updates the
displayed value whenever the debugger regains control from your program (for example, after a step or at a
breakpoint).

Note

You can monitor only a variable, including an aggregate such as an array or structure (record). You cannot monitor
a composite expression or memory address.

To monitor a variable(see Figure 10.13, “Monitoring a Variable™):

1. Find and select the variable name in a window as explained in Section 10.5.1, “Selecting Variable Names from
Windows”.

2. Click on the MON button in the push button view. The debugger:
* Displays the monitor view (if it is not displayed)

* Puts the selected variable's name, along with its qualifying path name, in the Monitor Expression column

Puts the value of the variable in the Value/Deposit column
* Puts a cleared button in the Watched column (see Section 10.5.5, “Watching a Variable™).

You can typecast the output value when monitoring variables by choosing the Typecast item in the Monitor menu.

190 VSI Confidential, NDA Required

Using the Debugger

You can change the output radix when monitoring variables as follows:
* Choose Change Radix in the Monitor menu to change the output radix for a selected monitored element.

* Choose the Change All Radix in the Monitor menu to change the output radix for all subsequently monitored
elements.

To remove a monitored element from the monitor view, choose Remove from the Monitor menu.

Figure 10.13. Monitoring a Variable

Placeholder
for images

10.5.4.1. Monitoring an Aggregate (Array or Structure) Variable

If you select the name of an aggregate variable, such as an array or structure (record) and click on the MON
button, the debugger displays the word Aggregate in the Value/Deposit column of the monitor view. To display
the values of all elements (components) of an aggregate variable, double click on the variable name in the Monitor
Expression column (or choose Expand in the Monitor menu).The displayed element names are indented relative
to the parent name (see Figure 10.14, “Expanded Aggregate Variable (Array) in Monitor View”). If an element is
also an aggregate, you can double click on its name to display its elements, and so on.

Figure 10.14. Expanded Aggregate Variable (Array) in Monitor View

Placeholder
for images

To collapse an expanded display so that only the aggregate parent name is shown in the monitor view, double click
on the name in the Monitor Expression column (or choose Collapse from the Monitor menu).

If you have selected a component of an aggregate variable, and the component expression is itself a variable, the
debugger monitors the component that was active when you made the selection. For example, if you select the
array component arr [i] and the current value of i is 9, the debugger monitors ar r [9] even if the value of
i subsequently changes to 10.

10.5.4.2. Monitoring a Pointer (Access) Variable

If you select the name of a pointer (access) variable and click on the MON button, the debugger displays the
address of the referenced object in the Value/Deposit column of the monitor view (see the top entry in Figure 10.15,
“Pointer Variable and Referenced Object in Monitor View”).

To monitor the value of the referenced object (to dereference the pointer variable), double click on the pointer
name in the Monitor Expression column. This adds an entry for the referenced object in the monitor view, indented
under the pointer entry (see the bottom entry in Figure 10.15, “Pointer Variable and Referenced Object in Monitor
View”). If a referenced object is an aggregate, you can double click on its name to display its elements, and so on.

VSI Confidential, NDA Required 191

Using the Debugger

Figure 10.15. Pointer Variable and Referenced Object in Monitor View

Placeholder
for images

10.5.5. Watching a Variable

Whenever the program changes the value of a watched variable, the debugger suspends execution and displays
the old and new values in the command view.

To watch a variable (also known as setting a watch point on a variable):

* Monitor the variable as explained in Section 10.5.4, “Monitoring a Variable ”.The debugger puts a button in the
Watched column of the monitor view whenever you monitor a variable. See Figure 10.16, “Watched Variable
in Monitor View”.

* Click on the button in the Watched column. A filled-in button indicates that the watch point is set.

Figure 10.16. Watched Variable in Monitor View

Placeholder
for images

To deactivate a watchpoint, clear its Watched button in the monitor view (by clicking on the button) or choose
Toggle Watchpoint in the Monitor menu. To activate a watchpoint, fill in its Watched button or choose Toggle
Watchpoint in the Monitor menu.

Section 10.6.1, “Accessing Static and Nonstatic (Automatic) Variables” explains static and nonstatic (automatic)
variables and how to access them. The debugger deactivates a nonstatic watchpoint when execution moves out of
(returns from) the variable's defining routine. When a non static variable is no longer active, its entry is dimmed
in the monitor view and its Watched button is cleared.

The debugger does not automatically reactivate non static watchpoints if execution later returns to the variable's
defining routine. You must reactivate non static watchpoints explicitly.

10.5.6. Changing the Value of a Monitored Scalar
Variable

To change the value of a scalar (non aggregate) variable, such as an integer or Boolean type (see Figure 10.17,
“Changing the Value of a Monitored Scalar Variable”):

1. Monitor the variable as explained in Section 10.5.4, “Monitoring a Variable ™.

2. Click on the variable's value in the Value/Deposit column of the monitor view. A small dialog box is displayed
over that value, which you can now edit.

3. Enter the new value in the dialog box.

192 VSI Confidential, NDA Required

Using the Debugger

4. Click on the check mark (OK) in the dialog box. The dialog box is removed and replaced by the new value,
indicating that the variable now has that value. The debugger notifies you if you try to enter a value that is
incompatible with the variable's type, range, and so on.

Figure 10.17. Changing the Value of a Monitored Scalar Variable

Placeholder
for images

To cancel a text entry and dismiss the dialog box, click on X (Cancel).
You can change the value of only one component of an aggregate variable (such as an array or structure) at a time.
To change the value of an aggregate-variable component (see Figure 10.18, “Changing the Value of a Component

of an Aggregate Variable™):

1. Display the value of the component as explained in Section 10.5.4.1, “Monitoring an Aggregate (Array or
Structure) Variable .

2. Click on the variable's value in the Value/Deposit column of the monitor view. A small dialog box is displayed
over that value, which you can now edit.

3. Enter the new value in the dialog box.
4. Click on the check mark (OK) in the dialog box. The dialog box is removed and replaced by the new value,

indicating that the variable now has that value. The debugger notifies you if you try to enter a value that is
incompatible with the variable's type, range, and so on.

Figure 10.18. Changing the Value of a Component of an Aggregate Variable

Placeholder
for images

10.6. Accessing Program Variables

This section provides some general information about accessing program variables while debugging.

If your program was optimized during compilation, you might not have access to certain variables while debugging.
When you compile a program for debugging, it is best to disable optimization, if possible (see Section 1.2.1,
“Compiling a Program for Debugging”).

Before you check on the value of a variable, always execute the program beyond the point where the variable is
declared and initialized. The value contained in any uninitialized variable should be considered invalid.

10.6.1. Accessing Static and Nonstatic (Automatic)
Variables

VSI Confidential, NDA Required 193

Using the Debugger

Note

The generic term nonstatic variable is used here to denote what is called an automatic variable in some languages.

A static variable is associated with the same memory address throughout execution of the program. You can always
access a static variable.

A nonstatic variable is allocated on the stack or in a register and has a value only when its defining routine or block
is active (on the call stack). Therefore, you can access a nonstatic variable only when program execution is paused
within the scope of its defining routine or block (which includes any routine called by the defining routine).

A common technique for accessing a nonstatic variable is first to set a breakpoint on the defining routine and then
to execute the program to the breakpoint.

Whenever the execution of your program makes a nonstatic variable inaccessible, the debugger notifies you as
follows:

» Ifyoutry to display the value of the variable or monitor the variable (as explained in Section 10.5.2, “Displaying
the Current Value of a Variable” and Section 10.5.4, “Monitoring a Variable ”, respectively), the debugger issues
a message that the variable is not active or not in scope.

* If the variable (or an expression that includes the variable) is currently being monitored, its entry becomes
dimmed in the monitor view. When the entry is dimmed, the debugger does not check or update the variable's
displayed value;also, you cannot change that value as explained in Section 10.5.3, “Changing the Current Value
of a Variable”. The entry is fully displayed whenever the variable becomes accessible again.

* If the variable is currently being watched (as explained in Section 10.5.5, “Watching a Variable”), the watch
point is deactivated (its Watched button is cleared) and its entry is dimmed in the monitor view. However, note
that the watchpoint is not reactivated automatically when the variable becomes accessible again.

10.6.2. Setting the Current Scope Relative to the Call
Stack

While debugging a routine in your program, you can set the current scope to a calling routine (a routine
down the stack from the routine in which execution is currently paused). This enables you to:

* Determine where the current routine call originated

* Determine the value of a variable declared in a calling routine

* Determine the value of a variable during a particular invocation of a routine that is called recursively
* Change the value of a variable in the context of a routine call

The Call Stack menu on the main window lists the names of the routines (and, under certain conditions, the images
and modules) of your program that are currently active on the stack, up to the maximum number of lines that can
be displayed on your screen (see Figure 10.19, “Current Scope Set to a Calling Routine”). The numbers on the
left side of the menu indicate the level of each routine on the stack relative to level 0, which denotes the routine
in which execution is paused.

To set the current scope to a particular routine on the stack, choose the routine's name from the Call Stack menu
(see Figure 10.19, “Current Scope Set to a Calling Routine™). This causes the following to occur:

The Call Stack menu, when released, shows the name and relative level of the routine that is now the current
scope.

* The main window shows that routine's source code.
. The instruction view (if displayed) shows that routine's decoded instructions.

. The register view (if displayed) shows the register values associated with that routine call.

194 VSI Confidential, NDA Required

Using the Debugger

« If the scope is set to a calling routine (a call-stack level other than 0), the debugger clears the current-location
pointer, as shown in Figure 10.19, “Current Scope Set to a Calling Routine”.

» The debugger sets the scope for symbol searches to the chosen routine, so that you can examine variables, and
so on, in the context of that scope.

Figure 10.19. Current Scope Set to a Calling Routine

Placeholder
for images

When you set the scope to a calling routine, the current-location pointer (which is cleared) marks the source line
to which execution will return in that routine. Depending on the source language and coding style used, this might
be the line that contains the call statement or some subsequent line.

10.6.3. How the Debugger Searches for Variables and
Other Symbols

Symbol ambiguities can occur when a symbol (for example, a variable name X) is defined in more than one routine
or other program unit.

In most cases, the debugger automatically resolves symbol ambiguities. First, it uses the scope and visibility rules
ofthe currently set language. In addition, because the debugger permits you to specify symbols in arbitrary modules
(to set breakpoints and so on), the debugger uses the ordering of routine calls on the call stack to resolve symbol
ambiguities.

In some cases, however, the debugger might respond as follows when you specify a symbol that is defined multiple
times:

It might issue a "symbol not unique" message because it is not able to determine the particular declaration of
the symbol that you intended.

« It might reference the symbol declaration that is visible in the current scope, not the one you want.

To resolve such problems, you must specify a scope where the debugger should search for the particular declaration
of the symbol:

« If the different declarations of the symbol are within routines that are currently active on the call stack, use the
Call Stack menu on the main window to reset the current scope (see Section 10.6.2, “Setting the Current Scope
Relative to the Call Stack™).

* Otherwise, enter the appropriate command at the command prompt (EXAMINE or MONITOR, for example),
specifying a path name prefix with the symbol. For example, if the variable X is defined in two modules named
COUNTER and SWAP, the following command uses the path name SWAP \X to specify the declaration of X
that is in module SWAP:

DBG> EXAM NE SWAP\ X

10.7. Displaying and Modifying Values Stored
in Registers

The register view displays the current contents of all machine registers (see Figure 10.20, “Register View”).

VSI Confidential, NDA Required 195

Using the Debugger

To display the register view, choose Views... from the Options menu on the main window or the optional views
window, then click on Registers when the Views dialog box appears.

By default, the register view automatically displays the register values associated with the routine in which
execution is currently paused. Any values that change as your program executes are highlighted whenever the
debugger regains control from your program.

To display the register values associated with any routine on the call stack, choose its name from the Call Stack
menu on the main window (see Section 10.6.2, “Setting the Current Scope Relative to the Call Stack™).

To change the value stored in a register:

1. Click on the register value in the register view. A small dialog box is displayed over the current value, which
you can now edit.

2. Enter the new value in the dialog box.

3. Click on the check mark (OK) in the dialog box. The debugger removes the dialog box and displays the new
value, indicating that the register now contains that value. To dismiss the dialog box without changing the value
in the register, click on X (Cancel).

To change the radix used to display register values:

* Choose Change Radix in the Register menu to change the radix in current and subsequent output for a selected
register.

* Choose Change All Radix in the Register menu to change the radix in current and subsequent output for all
registers.

Figure 10.20. Register View

Placeholder
for images

10.8. Displaying the Decoded Instruction
Stream of Your Program

The instruction view displays the decoded instruction stream of your program: the code that is actually executing
(see Figure 10.21, “Instruction View”). This is useful if the program you are debugging has been optimized by
the compiler so that the information in the main window does not exactly reflect the code that is executing (see
Section 1.2, “Preparing an Executable Image for Debugging”).

Figure 10.21. Instruction View

Placeholder
for images

196 VSI Confidential, NDA Required

Using the Debugger

To display the instruction view, choose Views... from the Options menu on the main window or the optional views
window, then click on Instructions when the Views dialog box appears.

By default, the instruction view automatically displays the decoded instruction stream of the routine in which
execution is currently paused. The current-location pointer, to the left of the instructions, marks the instruction
that will execute next.

By default, the debugger displays source code line numbers to the left of the instructions with which they are
associated. To hide or display line numbers, toggle Display Line Numbers from the File menu in the instruction
view.

By default, the debugger displays memory addresses to the left of the instructions. To hide or display addresses,
toggle Show Instruction Addresses from the File menu in the instruction view.

After navigating the instruction view, click on the Call Stack menu to redisplay the location at which execution
is paused.

To display the instruction stream of any routine on the call stack, choose the routine's name from the Call Stack
menu on the main window (see Section 10.6.2, “Setting the Current Scope Relative to the Call Stack™).

10.9. Debugging Tasking (Multithread)
Programs

Tasking programs, also called multithreaded programs, have multiple threads of execution within a process and
include the following:

* Programs in any language that use HP POSIX Threads Library or POSIX 1003.1b services.

» Programs that use language-specific tasking services (services provided directly by the language). Currently,
Ada is the only language with built-in tasking services that the debugger supports.

Within the debugger, the term ftask or thread denotes such a flow of control, regardless of the language or
implementation. The debugger's tasking support applies to all such programs.

The debugger enables you to display task information and modify task characteristics to control task execution,
priority, state transitions, and so on.

The following sections summarize the tasking features of the debugger's HP DECwindows Motif for OpenVMS
user interface. For more information about the debugger's tasking support, see Chapter 16, Debugging Tasking
Programs.

10.9.1. Displaying Information About Tasks (Threads)

To display information about one or more tasks (threads) of your program, choose Views... from the Options
menu on the main window or the optional views window, then click on Threads when the Views dialog box appears.

The Threads view gives information about all currently existing(non terminated) tasks of your program. The
information is updated whenever the debugger regains control from the program, as shown in Figure 10.22,
“Thread View”.

Figure 10.22. Thread View

Placeholder
for images

VSI Confidential, NDA Required 197

Using the Debugger

The displayed information includes:

* The thread ID. The arrow in the left column marks the active task; i.e., the thread that runs when you click on
the Go or STEP button.

* The thread priority.

* Whether the task (thread) has been put on hold as explained in Section 10.9.2, “Changing Task (Threads)
Characteristics”.

» The current state of the task (thread). The task in the RUN (running) state is the active task.
» The current substate of the task (thread). The substate helps indicate the possible cause of a task's state.

* A debugger path name for the task (thread) object or the address of the task object if the debugger cannot
symbolize the task object.

10.9.2. Changing Task (Threads) Characteristics

To modify a task's (thread's) characteristics or the tasking environment while debugging, choose one of the
following items from the Threads menu:

Threads Menu Item Description

Abort Request that the selected task (thread) be terminated at
the next allowed opportunity. The exact effect depends
on the current event facility (language dependent).For
Ada tasks, this is equivalent to executing an abort

statement.
Activate Make the selected task (thread) the active task.
Hold Place the selected task (thread) on hold.
No hold Release the selected task (thread) from hold.
Make Visible Make the selected task the visible task (thread).
All Use the submenu to abort all tasks (threads) or release

all tasks (threads) from hold.

10.10. Customizing the Debugger's HP
DECwindows Motif for OpenVMS Interface

The debugger is installed on your system with a default debugger resource file (DECW
$SYSTEM DEFAULTS: VMSDEBUG. DAT) that defines the startup defaults for the following customizable
parameters:
 Configuration of windows and views
* Whether to show or hide line numbers in the main window
* Button names and associated debugger commands
» Key sequence to display the dialog box for conditional and action break points

» Key sequence for language-sensitive text selection in the source view and instruction view

¢ Character fonts for text in the views

198 VSI Confidential, NDA Required

Using the Debugger

* Character font for text displayed in specific windows and views

Color of the text foreground and background colors in the source view, instruction view, and editor view
 Display of program, module, and routine names in the main window title bar
* Whether or not the debugger requires confirmation before exiting

A copy of the system default debugger resource file with explanatory comments is included in
Example 10.1, “System Default Debugger Resource File(DECWSSYSTEM DEFAULTS:VMSDEBUG.DAT)”
in Section 10.10.4, “Editing the Debugger Resource File”.

You can modify the first three of these display attributes interactively from the HP DECwindows Motif for
OpenVMS user interface, as explained in Section 10.10.1, “Defining the Startup Configuration of Debugger
Views”, Section 10.10.2, “Displaying or Hiding Line Numbers inSource View and Instruction View”, and
Section 10.10.3, “Modifying, Adding, Removing, and Resequencing Push Buttons”. In each case, you can save the
modified display configuration for future debugging sessions by choosing Save Options from the Options menu.

In addition, you can modify all the listed attributes of the debugger display configuration by editing and saving
the debugger resource file, as explained in Section 10.10.4, “Editing the Debugger Resource File”.

When you choose Save Options from the Options menu or you edit and save the local debugger resource file, the
debugger creates a new version of the local debugger resource file DECWSUSER DEFAULTS: VMSDEBUG. DAT
that contains the definitions of the display configuration attributes. When you next start the debugger, it uses the
attributes defined in the most recent local resource file to configure the output display. You can fall back to previous
debugger display configurations with appropriate use of the DCL commands DELETE, RENAME, and COPY.

To fall back to the system default display configuration, select Restore Default Options from the OpenVMS
Debugger Options menu.

10.10.1. Defining the Startup Configuration of
Debugger Views

To define the startup configuration of the debugger views:
1. While using the debugger, set up your preferred configuration of views.
2. Choose Save Options from the Options menu to create a new version of the debugger resource file.

When you next start the debugger, the debugger uses the most recent resource file to create the new display
configuration.

You can also define the startup display configuration by editing the definition of these views in the resource file
(see Section 10.10.4, “Editing the Debugger Resource File”).

10.10.2. Displaying or Hiding Line Numbers inSource
View and Instruction View

The source view and instruction view display source line numbers by default at debugger startup. To hide (or
display) line numbers at debugger startup:

1. While using the debugger, choose Display Line Numbers from the File menu on the main window (or the
instruction view). Line numbers are displayed when a filled-in button appears next to that menu item.

2. Choose Save Options from the Options menu to create a new version of the debugger's local resource file.

When you next start the debugger, the debugger uses the most recent resource file to create the new display
configuration.

VSI Confidential, NDA Required 199

Using the Debugger

You can also set the startup default for line numbers by setting the following resources to either True or False in
the resource file (see Section 10.10.4, “Editing the Debugger Resource File”).

DebugSour ce. St art upShowSour ceLi neno: True
Debugl nst ructi on. St art upShowl nst Li neno: True

10.10.3. Modifying, Adding, Removing, and
Resequencing Push Buttons

The buttons on the push button view are associated with debugger commands. You can:

* Change a button's label or associated command

¢ Add a new button

* Remove a button

» Resequence a button

Note

You cannot modify or remove the Stop button.

To save these modifications for future debugger sessions, choose Save Options from the Options menu.

Section 10.10.3.1, “Changing a Button's Label or Associated Command”, Section 10.10.3.2, “Adding a New
Button and Associated Command”, and Section 10.10.3.3, “Removing a Button”explain how to customize
push buttons interactively through the HP DECwindows Motif for OpenVMS user interface. You can
also customize push buttons by editing the resource file. Button definitions in the resource file begin
with: DebugControl . Button (See Example 10.1, “System Default Debugger Resource File(DECW
$SYSTEM DEFAULTS:VMSDEBUG.DAT)”.)

10.10.3.1. Changing a Button's Label or Associated Command

To change a button's label or associated command:

1.

Choose Customize Buttons... from the Options menu on the main window or the optional views window. The
Customize Buttons dialog box is displayed(see Figure 10.23, “Changing the STEP Button Label to an Icon”).

. Within the dialog box, click on the button you are modifying. This fills the Command and Label fields with the

parameters for that button. The example in Figure 10.23, “Changing the STEP Button Label to an Icon”’shows
that the STEP button was selected.

. To change the button icon, pull down the Icon menu within the dialog box and select one of the predefined icons.

As Figure 10.23, “Changing the STEP Button Label to an Icon” shows, the Label field dims and is filled with the
debugger's internal name for the predefined icon. The icon itself appears in the dialog box's push button display.

To change the button label, select None on the Icon menu and enter a new label in the Label field.

. To change the command associated with the button, enter the new command in the Command field. For online

help about the commands, see Section 8.4.3, “Displaying Help on Debugger Commands”.

Ifthe command is to operate on a name or language expression selected in a window, specify %5 as the command
parameter. For example, the following command displays the current value of the language expression that is
currently selected: EVALUATE %s.

If the command is to operate on a debugger built-in symbol or any other name that has a percent sign (%) as
the first character, specify two percent signs. For example:

200 VSI Confidential, NDA Required

Using the Debugger

EXAM NE 9%BANEXTLOC

5. Click on Modify. The button's label or associated command is changed within the dialog box push button
display.

6. Click on Apply. The button's label or associated command is changed within the debugger's push button view.

To save these modifications for future debugger sessions, choose Save Options from the Options menu.

Figure 10.23. Changing the STEP Button Label to an Icon

Placeholder
for images

10.10.3.2. Adding a New Button and Associated Command

To add a new button to the push button view and assign a debugger command to that button:

1. Choose Customize Buttons... from the Options menu. The Customize Buttons dialog box is displayed (see
Figure 10.24, “Adding a Button”).

2. Enter the debugger command for the new button in the Command field (see Section 10.10.3.1, “Changing a
Button's Label or Associated Command”). Figure 10.24, “Adding a Button” shows the debugger command
RUN MYDISK:[MYDIRECTORY]X.EXE was entered.

3. Enter a label for that button in the Label field or choose a predefined icon from the Icon menu. Figure 10.24,
“Adding a Button” shows that the Run-X label was chosen.

4. Click on Add. The button is added to the dialog box push button display.
5. Click on Apply. The button is added to the debugger's push button view.

To save these modifications for future debugger sessions, choose Save Options from the Options menu.

Figure 10.24. Adding a Button

Placeholder
for images

10.10.3.3. Removing a Button

To remove a button:

1. Choose Customize Buttons... from the Options menu on the main or optional views window. The Customize
Buttons dialog box is displayed.

2. Within the dialog box, click on the button you are removing. This fills the Command and Label fields with
the parameters for that button.

VSI Confidential, NDA Required 201

Using the Debugger

3. Click on Remove. The button is removed from the dialog box push button display.
4. Click on Apply. The button is removed from the debugger's push button view.

To save these modifications for future debugger sessions, choose Save Options from the Options menu.

10.10.3.4. Resequencing a Button

To resequence a button:

1. Choose Customize Buttons... from the Options menu on the main or optional views window. The Customize
Buttons dialog box is displayed.

2. Within the dialog box, click on the button you are resequencing. This fills the Command and Label fields with
the parameters for that button.

3. Click on the left or right arrow to move the button one position to the left or right. Continue to click until the
button has moved, one position at a time, to its final position.

4. Click on Apply to transfer this position to the debugger's push button view.

To save these modifications for future debugger sessions, choose Save Options from the Options menu.

10.10.4. Editing the Debugger Resource File

The debugger is installed on your system with a default debugger resource file (DECW
$SYSTEM DEFAULTS: VMSDEBUG. DAT) that defines the default display configuration for the debugger. When
you modify the display attributes as described in Section 10.10, “Customizing the Debugger's HP DECwindows
Motif for OpenVMS Interface” and then save the modifications with the Save Options command in the Options
menu, the debugger creates a local debugger resource file, DECWSUSER DEFAULTS: VVSDEBUG. DAT. You
can edit this file to further modify the debugger display configuration.

If you do not have a local debugger resource file, you can create one with the Restore Default Options item in the
Options menu. Whenever you start the debugger, it creates the debugger display configuration as defined in the
most recent version of the local debugger resource file if there is one; otherwise, the debugger uses the definitions
in the system debugger resource file, DECWBSYSTEM DEFAULTS: VVSDEBUG. DAT.

You cannot edit the system resource file. You can modify the debugger display configuration either by following
the procedures in Section 10.10.1, “Defining the Startup Configuration of Debugger Views”, Section 10.10.2,
“Displaying or Hiding Line Numbers inSource View and Instruction View”, and Section 10.10.3, “Modifying,
Adding, Removing, and Resequencing Push Buttons”, or by editing and saving your local debugger resource file.

Example 10.1, “System Default Debugger Resource File(DECWSSYSTEM DEFAULTS:VMSDEBUG.DAT)”
contains a copy of the system default debugger resource file. Most entries are annotated within the file or
are self-explanatory. Section 10.10.4.1, “Defining the Key Sequence to Display the Breakpoint Dialog Box”,
Section 10.10.4.2, “Defining the Key Sequence for Language-Sensitive Text Selection”, Section 10.10.4.3,
“Defining the Font for Displayed Text”, and Section 10.10.4.4, “Defining the Key Bindings on the Keypad” contain
additional information about modifying certain key sequences. For complete information about specifying key
sequences, see the translation table syntax in the X Toolkit Intrinsics documentation.

Note

The line in Example 10.1, “System Default Debugger Resource File(DECW
$SYSTEM DEFAULTS:VMSDEBUG.DAT)” that begins with DebugControl . Butt onLi st does not
completely fit in this example. This line identifies the button definitions contained in the file. The full
line in the file also contains the following button names: StepReturnButton, StepCallButton, ExamineButton,
ExamineASCIZButton, ExamineASCICButton, EvalButton, MonitorButton.

202 VSI Confidential, NDA Required

Using the Debugger

Example 10.1. System Default Debugger Resource File(DECW
$SYSTEM_DEFAULTS:VMSDEBUG.DAT)

OpenVMS Debug32/ 64 Debugger Resource File

GEOVETRY RESOURCES:

!

!

!

DebugVer si on: 71

!

!

!

I Witten when you execute "SAVE OPTIONS" fromthe Options Menu.
|

DebugSour ce. x: 11
DebugSour ce. y: 30
DebugSour ce. wi dt h: 620
DebugSour ce. hei ght : 700
|

DebugCont rol . x: 650
DebugControl . y: 30
DebugControl . wi dt h: 600
DebugCont r ol . hei ght : 700
|

DebugEdi t or . x: 650
DebugEdi tor.vy: 30
DebugEdi t or . wi dt h: 600
DebugEdi t or. hei ght : 700
|

Debugl nstructi on. x: 11
Debugl nstruction.y: 769
Debugl nst ructi on. wi dt h: 620
Debugl nst ructi on. hei ght: 243
|

*DebugBr owser . x: 650
*DebugBr owser . y: 30
*DebugBr owser . wi dt h: 335
*DebugBr owser . hei ght : 300

I
LI NE NUMBER DI SPLAY RESOURCES:

!
!
! Create the line or address number display in views at startup?
!

DebugSour ce. St art upShowSour ceLi neno: True

Debugl nstructi on. Start upShowl nst Li neno: True

Debugl nstructi on. St art upShow nst Addr no: Fal se

W NDOW PANE RESOURCES:

Rel ative size of panes in nmain w ndow.

!
!
I
I
I Main wi ndow height is derived fromsum of panes.
|

DebugSour ce* Sr cVi ew. hei ght : 460
DebugSour ce* Pushbut t onPanel . hei ght : 36
DebugSour ce* MessageQut put Panel . hei ght: 145
|

DebugCont r ol . Br eakpoi nt Vi ew. hei ght : 175
DebugCont r ol . Moni t or Vi ew. hei ght : 150
DebugCont r ol . TaskVi ew. hei ght : 130
DebugCont r ol . Regi st er Vi ew. hei ght : 250

VSI Confidential, NDA Required 203

Using the Debugger

CUSTOM BUTTON RESOURCES:

The foll owi ng resources determ ne which buttons to put in the button

panel .
Buttons will show in the order they are listed here.
For each button there MJUST be a set of associ ated resources.

EXAMPLE:
But t onConmand -
Butt onLegend -
But t onPi xmapFl ag -

Associ ates a command with the button.
Button Label or pixmap name if pixmap flag is True.
If True uses ButtonLegend as predefined pi xmap nane.

DebugControl . ButtonList: \ GoButton, StepButton, SteplnButton,
!

DebugCont r ol . But t onConmand. GoBut t on: go
DebugCont r ol . Butt onLegend. GoBut t on: go_pi xmap
DebugCont r ol . But t onPi xmapFl ag. GoBut t on: True

!

DebugCont r ol . But t onConmand. St epBut t on: step
DebugCont r ol . Butt onLegend. St epBut t on: STEP
DebugCont r ol . But t onPi xmapFl ag. St epBut t on: Fal se

!

DebugCont r ol . But t onCommrand. St epl nBut t on: step/in
DebugCont r ol . Butt onLegend. St epl nBut t on: S/in
DebugCont r ol . Butt onPi xmapFl ag. St epl nBut t on: Fal se

!

DebugCont r ol . But t onConmand. St epRet ur nBut t on: step/return
DebugCont r ol . Butt onLegend. St epRet ur nBut t on: S/ret
DebugCont r ol . But t onPi xmapFl ag. St epRet ur nBut t on: Fal se

!

DebugCont r ol . But t onConmand. St epCal | But t on: step/ cal |
DebugCont r ol . Butt onLegend. St epCal | But t on: S/ cal |
DebugCont r ol . But t onPi xmapFl ag. St epCal | But t on: Fal se

!

DebugCont r ol . But t onConmrand. Exami neBut t on: exam ne Y%
DebugCont r ol . But t onLegend. Exam neBut t on: EX
DebugCont r ol . Butt onPi xmapFl ag. Exam neBut t on: Fal se

!

DebugCont r ol . But t onCommrand. Exam neASCl ZBut t on: exam ne/ asci z %
DebugCont r ol . But t onLegend. Exam neASCl ZBut t on: E/ az
DebugCont r ol . But t onPi xmapFl ag. Exam neASCl ZButt on: Fal se

!

DebugCont r ol . But t onCommrand. Exam neASCl CBut t on: exam ne/ ascic %
DebugCont r ol . But t onLegend. Exam neASCl CBut t on: E/ ac
DebugCont r ol . But t onPi xmapFl ag. Exam neASCl CButt on: Fal se

!

DebugCont r ol . But t onConmand. Eval But t on: eval uate %
DebugCont r ol . Butt onLegend. Eval But t on: EVAL
DebugCont r ol . But t onPi xmapFl ag. Eval But t on: Fal se

!

DebugCont r ol . But t onConmmand. Moni t or But t on: noni tor Y%
DebugCont r ol . But t onLegend. Moni t or But t on: MON
DebugCont r ol . Butt onPi xmapFl ag. Moni t or But t on: Fal se

Be sure to trimoff any trailing white-spaces.

THE FOLLOW NG RESOURCES CAN ONLY BE CHANGED BY EDI TING THI S FI LE.

204

VSI Confidential, NDA Required

Using the Debugger

FONT RESOURCES:

system it will be used for that view.

|
|
!
! If a font is specified for a view, and the font is available on the
|
|
|

For any views which do not explicitly specify a font, the font
speci fied

! by the resource "DebugDefault.Font" will be used if it is available on
t he

system

If no font resources are specified at all, the debugger will use the

systenms own default font specification

Vi ews
in order to preserve |abel alignment.

Using 132 col um sources? Try this narrow font:

!
!
!
! -dec-term nal - nedi umr-narr ow - 14- 100- 100- 100- c- 60-i s08859-1
]
!
|

FORNAT: - *- FONTNAM FACE- T-*--*- PTS- *-*-*-*. CHARSET
DebugDef aul t . Font : -*-COURI ER-BOLD- R-*--*-120-*-*-*-*-]1 SCB8859- 1
DebugSour ce. Font : -*-COURI ER-BOLD- R-*--*-120-*-*-*-*-] SCB8859- 1
Debugl nstructi on. Font: -*-COURI ER-BOLD- R-*--*-140-*-*-*-*-] SCB8859- 1
DebugMessage. Font : -*-COURI ER-BOLD- R-*--*-120-*-*-*-*-] SCB8859- 1
-*-COURI ER-BOLD- R-*--*-120-*-*-*-*-] SCB8859- 1

DebugOpt i ons. Font :
I

I STARTUP RESOURCES: 3=lconified, 0=Visible
!

DebugSource.initial State: 0

DebugControl .initial State: 0
DebugEditor.initial State: 0

Debugl nstruction.initial State: 0

COLOR RESQOURCES:

Use any of the OSF Motif Named Col ors.

I

!

!

!

!

I Foreground = Text Col or, Background = W ndow Col or

!

I Try: Gainsboro, MntCream Linen, SeaShell, M styRose, Honeydew

! Cornsi |l k, Lavender

!

I To use your system default col or schene, comment out all |ines!
pertaining to col or.

I

I' Common col or schene (unless overridden for a specific view)

!

*packgr ound: Gai nsbhoro

*por der Col or: Red

I

I Source View Col ors

|

I DebugSour ce*backgr ound: Gai nsbhoro

The "DebugOptions. Font" applies to all optional views. W suggest that
you select a font with a point size no larger than 14 in the option

VSI Confidential, NDA Required

205

Using the Debugger

DebugSour ce*t opShadowCol or : W ndowTopshadow
DebugSour ce* bot t onShadowCol or : W ndowBot t onshadow
DebugSour ce*src_t xt . f or egr ound: bl ue

DebugSour ce*src_t xt . backgr ound: white

DebugSour ce*src_I| i neno_t xt w. f or egr ound: red

DebugSour ce*cnt _nsg_t xt . f or egr ound: bl ack

DebugSour ce*cnt _nsg_t xt . backgr ound: white

| Control View Col ors
|

I DebugCont r ol *backgr ound: Gai nsbhoro
DebugCont r ol *t opShadowCol or : W ndowTopshadow

DebugCont r ol *bot t onShadowCol or : W ndowBot t onshadow
|

I Instruction View Col ors
|

I Debugl nst ructi on*backgr ound: Gai nsb